use_hoho (#1)
Browse files- print (718a478058081d9f09f584f56a0d6ab02427a57b)
- multiprocess (22f7dc43c7d6b39434e74d29321c202bcad34daf)
- pull hoho to separate package (60bf65f206ddaf497dcb3ba053b61f73b8885f89)
- add hoho (fd89e737cb8b22eca7568d513be0fcaa672ef560)
- assume hoho exists (53332d75f05661cfd779afc9d43fea6763bb9231)
- fix typo (fab49d6c2f9f5941e9f6ff5afa22cd3c52ab7708)
- return key with empty solution (f73f74e61befaa8366a1bef73ff1d364d08e1730)
- add eda notebook (4285f2cc0c0c3bb8e59cbbd1ad9cf1d43e5f9255)
- rerun eda notebook (1ba09bb1b7251ad4215e5c798803977a6f949c56)
- prepare example (a2b9af36c2691bb83ee1bd357aa14f13a773a9e7)
- cleanup (48877ec32f44d5486dec5995c55bf2e4a2fc8897)
- cleanup (a1e5421db493c5f55e15f46d339dd455dfeab5e1)
- .gitattributes +1 -0
- .gitignore +2 -1
- color_mappings.py +0 -182
- handcrafted_solution.py +6 -5
- hoho.py +0 -261
- packages/webdataset/numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl → notebooks/EDA.ipynb +2 -2
- notebooks/example_on_training.ipynb +0 -0
- packages/webdataset/PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl +0 -3
- packages/webdataset/braceexpand-0.1.7-py2.py3-none-any.whl +0 -3
- packages/webdataset/webdataset-0.2.86-py3-none-any.whl +0 -3
- read_write_colmap.py +0 -489
- script.py +77 -76
- viz3d.py +0 -302
.gitattributes
CHANGED
|
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*.whl filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 37 |
packages/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 35 |
*.whl filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 37 |
packages/** filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.ipynb filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
.ipynb_checkpoints
|
| 2 |
-
|
|
|
|
|
|
| 1 |
.ipynb_checkpoints
|
| 2 |
+
__pycache__/
|
| 3 |
+
data
|
color_mappings.py
DELETED
|
@@ -1,182 +0,0 @@
|
|
| 1 |
-
gestalt_color_mapping = {
|
| 2 |
-
"unclassified": (215, 62, 138),
|
| 3 |
-
"apex": (235, 88, 48),
|
| 4 |
-
"eave_end_point": (248, 130, 228),
|
| 5 |
-
"flashing_end_point": (71, 11, 161),
|
| 6 |
-
"ridge": (214, 251, 248),
|
| 7 |
-
"rake": (13, 94, 47),
|
| 8 |
-
"eave": (54, 243, 63),
|
| 9 |
-
"post": (187, 123, 236),
|
| 10 |
-
"ground_line": (136, 206, 14),
|
| 11 |
-
"flashing": (162, 162, 32),
|
| 12 |
-
"step_flashing": (169, 255, 219),
|
| 13 |
-
"hip": (8, 89, 52),
|
| 14 |
-
"valley": (85, 27, 65),
|
| 15 |
-
"roof": (215, 232, 179),
|
| 16 |
-
"door": (110, 52, 23),
|
| 17 |
-
"garage": (50, 233, 171),
|
| 18 |
-
"window": (230, 249, 40),
|
| 19 |
-
"shutter": (122, 4, 233),
|
| 20 |
-
"fascia": (95, 230, 240),
|
| 21 |
-
"soffit": (2, 102, 197),
|
| 22 |
-
"horizontal_siding": (131, 88, 59),
|
| 23 |
-
"vertical_siding": (110, 187, 198),
|
| 24 |
-
"brick": (171, 252, 7),
|
| 25 |
-
"concrete": (32, 47, 246),
|
| 26 |
-
"other_wall": (112, 61, 240),
|
| 27 |
-
"trim": (151, 206, 58),
|
| 28 |
-
"unknown": (127, 127, 127),
|
| 29 |
-
}
|
| 30 |
-
|
| 31 |
-
ade20k_color_mapping = {
|
| 32 |
-
'wall': (120, 120, 120),
|
| 33 |
-
'building;edifice': (180, 120, 120),
|
| 34 |
-
'sky': (6, 230, 230),
|
| 35 |
-
'floor;flooring': (80, 50, 50),
|
| 36 |
-
'tree': (4, 200, 3),
|
| 37 |
-
'ceiling': (120, 120, 80),
|
| 38 |
-
'road;route': (140, 140, 140),
|
| 39 |
-
'bed': (204, 5, 255),
|
| 40 |
-
'windowpane;window': (230, 230, 230),
|
| 41 |
-
'grass': (4, 250, 7),
|
| 42 |
-
'cabinet': (224, 5, 255),
|
| 43 |
-
'sidewalk;pavement': (235, 255, 7),
|
| 44 |
-
'person;individual;someone;somebody;mortal;soul': (150, 5, 61),
|
| 45 |
-
'earth;ground': (120, 120, 70),
|
| 46 |
-
'door;double;door': (8, 255, 51),
|
| 47 |
-
'table': (255, 6, 82),
|
| 48 |
-
'mountain;mount': (143, 255, 140),
|
| 49 |
-
'plant;flora;plant;life': (204, 255, 4),
|
| 50 |
-
'curtain;drape;drapery;mantle;pall': (255, 51, 7),
|
| 51 |
-
'chair': (204, 70, 3),
|
| 52 |
-
'car;auto;automobile;machine;motorcar': (0, 102, 200),
|
| 53 |
-
'water': (61, 230, 250),
|
| 54 |
-
'painting;picture': (255, 6, 51),
|
| 55 |
-
'sofa;couch;lounge': (11, 102, 255),
|
| 56 |
-
'shelf': (255, 7, 71),
|
| 57 |
-
'house': (255, 9, 224),
|
| 58 |
-
'sea': (9, 7, 230),
|
| 59 |
-
'mirror': (220, 220, 220),
|
| 60 |
-
'rug;carpet;carpeting': (255, 9, 92),
|
| 61 |
-
'field': (112, 9, 255),
|
| 62 |
-
'armchair': (8, 255, 214),
|
| 63 |
-
'seat': (7, 255, 224),
|
| 64 |
-
'fence;fencing': (255, 184, 6),
|
| 65 |
-
'desk': (10, 255, 71),
|
| 66 |
-
'rock;stone': (255, 41, 10),
|
| 67 |
-
'wardrobe;closet;press': (7, 255, 255),
|
| 68 |
-
'lamp': (224, 255, 8),
|
| 69 |
-
'bathtub;bathing;tub;bath;tub': (102, 8, 255),
|
| 70 |
-
'railing;rail': (255, 61, 6),
|
| 71 |
-
'cushion': (255, 194, 7),
|
| 72 |
-
'base;pedestal;stand': (255, 122, 8),
|
| 73 |
-
'box': (0, 255, 20),
|
| 74 |
-
'column;pillar': (255, 8, 41),
|
| 75 |
-
'signboard;sign': (255, 5, 153),
|
| 76 |
-
'chest;of;drawers;chest;bureau;dresser': (6, 51, 255),
|
| 77 |
-
'counter': (235, 12, 255),
|
| 78 |
-
'sand': (160, 150, 20),
|
| 79 |
-
'sink': (0, 163, 255),
|
| 80 |
-
'skyscraper': (140, 140, 140),
|
| 81 |
-
'fireplace;hearth;open;fireplace': (250, 10, 15),
|
| 82 |
-
'refrigerator;icebox': (20, 255, 0),
|
| 83 |
-
'grandstand;covered;stand': (31, 255, 0),
|
| 84 |
-
'path': (255, 31, 0),
|
| 85 |
-
'stairs;steps': (255, 224, 0),
|
| 86 |
-
'runway': (153, 255, 0),
|
| 87 |
-
'case;display;case;showcase;vitrine': (0, 0, 255),
|
| 88 |
-
'pool;table;billiard;table;snooker;table': (255, 71, 0),
|
| 89 |
-
'pillow': (0, 235, 255),
|
| 90 |
-
'screen;door;screen': (0, 173, 255),
|
| 91 |
-
'stairway;staircase': (31, 0, 255),
|
| 92 |
-
'river': (11, 200, 200),
|
| 93 |
-
'bridge;span': (255 ,82, 0),
|
| 94 |
-
'bookcase': (0, 255, 245),
|
| 95 |
-
'blind;screen': (0, 61, 255),
|
| 96 |
-
'coffee;table;cocktail;table': (0, 255, 112),
|
| 97 |
-
'toilet;can;commode;crapper;pot;potty;stool;throne': (0, 255, 133),
|
| 98 |
-
'flower': (255, 0, 0),
|
| 99 |
-
'book': (255, 163, 0),
|
| 100 |
-
'hill': (255, 102, 0),
|
| 101 |
-
'bench': (194, 255, 0),
|
| 102 |
-
'countertop': (0, 143, 255),
|
| 103 |
-
'stove;kitchen;stove;range;kitchen;range;cooking;stove': (51, 255, 0),
|
| 104 |
-
'palm;palm;tree': (0, 82, 255),
|
| 105 |
-
'kitchen;island': (0, 255, 41),
|
| 106 |
-
'computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system': (0, 255, 173),
|
| 107 |
-
'swivel;chair': (10, 0, 255),
|
| 108 |
-
'boat': (173, 255, 0),
|
| 109 |
-
'bar': (0, 255, 153),
|
| 110 |
-
'arcade;machine': (255, 92, 0),
|
| 111 |
-
'hovel;hut;hutch;shack;shanty': (255, 0, 255),
|
| 112 |
-
'bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle': (255, 0, 245),
|
| 113 |
-
'towel': (255, 0, 102),
|
| 114 |
-
'light;light;source': (255, 173, 0),
|
| 115 |
-
'truck;motortruck': (255, 0, 20),
|
| 116 |
-
'tower': (255, 184, 184),
|
| 117 |
-
'chandelier;pendant;pendent': (0, 31, 255),
|
| 118 |
-
'awning;sunshade;sunblind': (0, 255, 61),
|
| 119 |
-
'streetlight;street;lamp': (0, 71, 255),
|
| 120 |
-
'booth;cubicle;stall;kiosk': (255, 0, 204),
|
| 121 |
-
'television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box': (0, 255, 194),
|
| 122 |
-
'airplane;aeroplane;plane': (0, 255, 82),
|
| 123 |
-
'dirt;track': (0, 10, 255),
|
| 124 |
-
'apparel;wearing;apparel;dress;clothes': (0, 112, 255),
|
| 125 |
-
'pole': (51, 0, 255),
|
| 126 |
-
'land;ground;soil': (0, 194, 255),
|
| 127 |
-
'bannister;banister;balustrade;balusters;handrail': (0, 122, 255),
|
| 128 |
-
'escalator;moving;staircase;moving;stairway': (0, 255, 163),
|
| 129 |
-
'ottoman;pouf;pouffe;puff;hassock': (255, 153, 0),
|
| 130 |
-
'bottle': (0, 255, 10),
|
| 131 |
-
'buffet;counter;sideboard': (255, 112, 0),
|
| 132 |
-
'poster;posting;placard;notice;bill;card': (143, 255, 0),
|
| 133 |
-
'stage': (82, 0, 255),
|
| 134 |
-
'van': (163, 255, 0),
|
| 135 |
-
'ship': (255, 235, 0),
|
| 136 |
-
'fountain': (8, 184, 170),
|
| 137 |
-
'conveyer;belt;conveyor;belt;conveyer;conveyor;transporter': (133, 0, 255),
|
| 138 |
-
'canopy': (0, 255, 92),
|
| 139 |
-
'washer;automatic;washer;washing;machine': (184, 0, 255),
|
| 140 |
-
'plaything;toy': (255, 0, 31),
|
| 141 |
-
'swimming;pool;swimming;bath;natatorium': (0, 184, 255),
|
| 142 |
-
'stool': (0, 214, 255),
|
| 143 |
-
'barrel;cask': (255, 0, 112),
|
| 144 |
-
'basket;handbasket': (92, 255, 0),
|
| 145 |
-
'waterfall;falls': (0, 224, 255),
|
| 146 |
-
'tent;collapsible;shelter': (112, 224, 255),
|
| 147 |
-
'bag': (70, 184, 160),
|
| 148 |
-
'minibike;motorbike': (163, 0, 255),
|
| 149 |
-
'cradle': (153, 0, 255),
|
| 150 |
-
'oven': (71, 255, 0),
|
| 151 |
-
'ball': (255, 0, 163),
|
| 152 |
-
'food;solid;food': (255, 204, 0),
|
| 153 |
-
'step;stair': (255, 0, 143),
|
| 154 |
-
'tank;storage;tank': (0, 255, 235),
|
| 155 |
-
'trade;name;brand;name;brand;marque': (133, 255, 0),
|
| 156 |
-
'microwave;microwave;oven': (255, 0, 235),
|
| 157 |
-
'pot;flowerpot': (245, 0, 255),
|
| 158 |
-
'animal;animate;being;beast;brute;creature;fauna': (255, 0, 122),
|
| 159 |
-
'bicycle;bike;wheel;cycle': (255, 245, 0),
|
| 160 |
-
'lake': (10, 190, 212),
|
| 161 |
-
'dishwasher;dish;washer;dishwashing;machine': (214, 255, 0),
|
| 162 |
-
'screen;silver;screen;projection;screen': (0, 204, 255),
|
| 163 |
-
'blanket;cover': (20, 0, 255),
|
| 164 |
-
'sculpture': (255, 255, 0),
|
| 165 |
-
'hood;exhaust;hood': (0, 153, 255),
|
| 166 |
-
'sconce': (0, 41, 255),
|
| 167 |
-
'vase': (0, 255, 204),
|
| 168 |
-
'traffic;light;traffic;signal;stoplight': (41, 0, 255),
|
| 169 |
-
'tray': (41, 255, 0),
|
| 170 |
-
'ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin': (173, 0, 255),
|
| 171 |
-
'fan': (0, 245, 255),
|
| 172 |
-
'pier;wharf;wharfage;dock': (71, 0, 255),
|
| 173 |
-
'crt;screen': (122, 0, 255),
|
| 174 |
-
'plate': (0, 255, 184),
|
| 175 |
-
'monitor;monitoring;device': (0, 92, 255),
|
| 176 |
-
'bulletin;board;notice;board': (184, 255, 0),
|
| 177 |
-
'shower': (0, 133, 255),
|
| 178 |
-
'radiator': (255, 214, 0),
|
| 179 |
-
'glass;drinking;glass': (25, 194, 194),
|
| 180 |
-
'clock': (102, 255, 0),
|
| 181 |
-
'flag': (92, 0, 255),
|
| 182 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
handcrafted_solution.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
|
| 2 |
|
| 3 |
import io
|
| 4 |
-
from read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
| 5 |
from PIL import Image as PImage
|
| 6 |
import numpy as np
|
| 7 |
-
from color_mappings import gestalt_color_mapping, ade20k_color_mapping
|
| 8 |
from collections import defaultdict
|
| 9 |
import cv2
|
| 10 |
from typing import Tuple, List
|
| 11 |
from scipy.spatial.distance import cdist
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def empty_solution():
|
| 15 |
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
|
|
@@ -234,9 +235,9 @@ def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
|
|
| 234 |
all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
|
| 235 |
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
|
| 236 |
print (f'Not enough vertices or connections in the 3D vertices')
|
| 237 |
-
return empty_solution()
|
| 238 |
if visualize:
|
| 239 |
-
from viz3d import plot_estimate_and_gt
|
| 240 |
plot_estimate_and_gt(all_3d_vertices_clean, connections_3d_clean, good_entry['wf_vertices'],
|
| 241 |
good_entry['wf_edges'])
|
| 242 |
-
return
|
|
|
|
| 1 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
|
| 2 |
|
| 3 |
import io
|
|
|
|
| 4 |
from PIL import Image as PImage
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from collections import defaultdict
|
| 7 |
import cv2
|
| 8 |
from typing import Tuple, List
|
| 9 |
from scipy.spatial.distance import cdist
|
| 10 |
|
| 11 |
+
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
| 12 |
+
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
|
| 13 |
+
|
| 14 |
|
| 15 |
def empty_solution():
|
| 16 |
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
|
|
|
|
| 235 |
all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
|
| 236 |
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
|
| 237 |
print (f'Not enough vertices or connections in the 3D vertices')
|
| 238 |
+
return (good_entry['__key__'], *empty_solution())
|
| 239 |
if visualize:
|
| 240 |
+
from hoho.viz3d import plot_estimate_and_gt
|
| 241 |
plot_estimate_and_gt(all_3d_vertices_clean, connections_3d_clean, good_entry['wf_vertices'],
|
| 242 |
good_entry['wf_edges'])
|
| 243 |
+
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean, [0 for i in range(len(connections_3d_clean))]
|
hoho.py
DELETED
|
@@ -1,261 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
import shutil
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from typing import Dict
|
| 6 |
-
|
| 7 |
-
from PIL import ImageFile
|
| 8 |
-
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
| 9 |
-
|
| 10 |
-
LOCAL_DATADIR = None
|
| 11 |
-
|
| 12 |
-
def setup(local_dir='./data/usm-training-data/data'):
|
| 13 |
-
|
| 14 |
-
# If we are in the test environment, we need to link the data directory to the correct location
|
| 15 |
-
tmp_datadir = Path('/tmp/data/data')
|
| 16 |
-
local_test_datadir = Path('./data/usm-test-data-x/data')
|
| 17 |
-
local_val_datadir = Path(local_dir)
|
| 18 |
-
|
| 19 |
-
os.system('pwd')
|
| 20 |
-
os.system('ls -lahtr .')
|
| 21 |
-
|
| 22 |
-
if tmp_datadir.exists() and not local_test_datadir.exists():
|
| 23 |
-
global LOCAL_DATADIR
|
| 24 |
-
LOCAL_DATADIR = local_test_datadir
|
| 25 |
-
# shutil.move(datadir, './usm-test-data-x/data')
|
| 26 |
-
print(f"Linking {tmp_datadir} to {LOCAL_DATADIR} (we are in the test environment)")
|
| 27 |
-
LOCAL_DATADIR.parent.mkdir(parents=True, exist_ok=True)
|
| 28 |
-
LOCAL_DATADIR.symlink_to(tmp_datadir)
|
| 29 |
-
else:
|
| 30 |
-
LOCAL_DATADIR = local_val_datadir
|
| 31 |
-
print(f"Using {LOCAL_DATADIR} as the data directory (we are running locally)")
|
| 32 |
-
|
| 33 |
-
# os.system("ls -lahtr")
|
| 34 |
-
|
| 35 |
-
assert LOCAL_DATADIR.exists(), f"Data directory {LOCAL_DATADIR} does not exist"
|
| 36 |
-
return LOCAL_DATADIR
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
import importlib
|
| 42 |
-
from pathlib import Path
|
| 43 |
-
import subprocess
|
| 44 |
-
|
| 45 |
-
def download_package(package_name, path_to_save='packages'):
|
| 46 |
-
"""
|
| 47 |
-
Downloads a package using pip and saves it to a specified directory.
|
| 48 |
-
|
| 49 |
-
Parameters:
|
| 50 |
-
package_name (str): The name of the package to download.
|
| 51 |
-
path_to_save (str): The path to the directory where the package will be saved.
|
| 52 |
-
"""
|
| 53 |
-
try:
|
| 54 |
-
# pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
|
| 55 |
-
subprocess.check_call([subprocess.sys.executable, "-m", "pip", "download", package_name,
|
| 56 |
-
"-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory
|
| 57 |
-
"--platform", "manylinux1_x86_64", # Specify the platform
|
| 58 |
-
"--python-version", "38", # Specify the Python version
|
| 59 |
-
"--only-binary=:all:"]) # Download only binary packages
|
| 60 |
-
print(f'Package "{package_name}" downloaded successfully')
|
| 61 |
-
except subprocess.CalledProcessError as e:
|
| 62 |
-
print(f'Failed to downloaded package "{package_name}". Error: {e}')
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def install_package_from_local_file(package_name, folder='packages'):
|
| 66 |
-
"""
|
| 67 |
-
Installs a package from a local .whl file or a directory containing .whl files using pip.
|
| 68 |
-
|
| 69 |
-
Parameters:
|
| 70 |
-
path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
|
| 71 |
-
"""
|
| 72 |
-
try:
|
| 73 |
-
pth = str(Path(folder) / package_name)
|
| 74 |
-
subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
|
| 75 |
-
"--no-index", # Do not use package index
|
| 76 |
-
"--find-links", pth, # Look for packages in the specified directory or at the file
|
| 77 |
-
package_name]) # Specify the package to install
|
| 78 |
-
print(f"Package installed successfully from {pth}")
|
| 79 |
-
except subprocess.CalledProcessError as e:
|
| 80 |
-
print(f"Failed to install package from {pth}. Error: {e}")
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def importt(module_name, as_name=None):
|
| 84 |
-
"""
|
| 85 |
-
Imports a module and returns it.
|
| 86 |
-
|
| 87 |
-
Parameters:
|
| 88 |
-
module_name (str): The name of the module to import.
|
| 89 |
-
as_name (str): The name to use for the imported module. If None, the original module name will be used.
|
| 90 |
-
|
| 91 |
-
Returns:
|
| 92 |
-
The imported module.
|
| 93 |
-
"""
|
| 94 |
-
for _ in range(2):
|
| 95 |
-
try:
|
| 96 |
-
if as_name is None:
|
| 97 |
-
print(f'imported {module_name}')
|
| 98 |
-
return importlib.import_module(module_name)
|
| 99 |
-
else:
|
| 100 |
-
print(f'imported {module_name} as {as_name}')
|
| 101 |
-
return importlib.import_module(module_name, as_name)
|
| 102 |
-
except ModuleNotFoundError as e:
|
| 103 |
-
install_package_from_local_file(module_name)
|
| 104 |
-
print(f"Failed to import module {module_name}. Error: {e}")
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def prepare_submission():
|
| 108 |
-
# Download packages from requirements.txt
|
| 109 |
-
if Path('requirements.txt').exists():
|
| 110 |
-
print('downloading packages from requirements.txt')
|
| 111 |
-
Path('packages').mkdir(exist_ok=True)
|
| 112 |
-
with open('requirements.txt') as f:
|
| 113 |
-
packages = f.readlines()
|
| 114 |
-
for p in packages:
|
| 115 |
-
download_package(p.strip())
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
print('all packages downloaded. Don\'t foget to include the packages in the submission by adding them with git lfs.')
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
def Rt_to_eye_target(im, K, R, t):
|
| 122 |
-
height = im.height
|
| 123 |
-
focal_length = K[0,0]
|
| 124 |
-
fov = 2.0 * np.arctan2((0.5 * height), focal_length) / (np.pi / 180.0)
|
| 125 |
-
|
| 126 |
-
x_axis, y_axis, z_axis = R
|
| 127 |
-
|
| 128 |
-
eye = -(R.T @ t).squeeze()
|
| 129 |
-
z_axis = z_axis.squeeze()
|
| 130 |
-
target = eye + z_axis
|
| 131 |
-
up = -y_axis
|
| 132 |
-
|
| 133 |
-
return eye, target, up, fov
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
########## general utilities ##########
|
| 137 |
-
import contextlib
|
| 138 |
-
import tempfile
|
| 139 |
-
from pathlib import Path
|
| 140 |
-
|
| 141 |
-
@contextlib.contextmanager
|
| 142 |
-
def working_directory(path):
|
| 143 |
-
"""Changes working directory and returns to previous on exit."""
|
| 144 |
-
prev_cwd = Path.cwd()
|
| 145 |
-
os.chdir(path)
|
| 146 |
-
try:
|
| 147 |
-
yield
|
| 148 |
-
finally:
|
| 149 |
-
os.chdir(prev_cwd)
|
| 150 |
-
|
| 151 |
-
@contextlib.contextmanager
|
| 152 |
-
def temp_working_directory():
|
| 153 |
-
with tempfile.TemporaryDirectory(dir='.') as D:
|
| 154 |
-
with working_directory(D):
|
| 155 |
-
yield
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
############# Dataset #############
|
| 159 |
-
def proc(row, split='train'):
|
| 160 |
-
# column_names_train = ['ade20k', 'depthcm', 'gestalt', 'colmap', 'KRt', 'mesh', 'wireframe']
|
| 161 |
-
# column_names_test = ['ade20k', 'depthcm', 'gestalt', 'colmap', 'KRt', 'wireframe']
|
| 162 |
-
# cols = column_names_train if split == 'train' else column_names_test
|
| 163 |
-
out = {}
|
| 164 |
-
for k, v in row.items():
|
| 165 |
-
colname = k.split('.')[0]
|
| 166 |
-
if colname in {'ade20k', 'depthcm', 'gestalt'}:
|
| 167 |
-
if colname in out:
|
| 168 |
-
out[colname].append(v)
|
| 169 |
-
else:
|
| 170 |
-
out[colname] = [v]
|
| 171 |
-
elif colname in {'wireframe', 'mesh'}:
|
| 172 |
-
# out.update({a: b.tolist() for a,b in v.items()})
|
| 173 |
-
out.update({a: b for a,b in v.items()})
|
| 174 |
-
elif colname in 'kr':
|
| 175 |
-
out[colname.upper()] = v
|
| 176 |
-
else:
|
| 177 |
-
out[colname] = v
|
| 178 |
-
|
| 179 |
-
return Sample(out)
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
class Sample(Dict):
|
| 183 |
-
def __repr__(self):
|
| 184 |
-
return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
def get_params():
|
| 189 |
-
exmaple_param_dict = {
|
| 190 |
-
"competition_id": "usm3d/S23DR",
|
| 191 |
-
"competition_type": "script",
|
| 192 |
-
"metric": "custom",
|
| 193 |
-
"token": "hf_**********************************",
|
| 194 |
-
"team_id": "local-test-team_id",
|
| 195 |
-
"submission_id": "local-test-submission_id",
|
| 196 |
-
"submission_id_col": "__key__",
|
| 197 |
-
"submission_cols": [
|
| 198 |
-
"__key__",
|
| 199 |
-
"wf_edges",
|
| 200 |
-
"wf_vertices",
|
| 201 |
-
"edge_semantics"
|
| 202 |
-
],
|
| 203 |
-
"submission_rows": 180,
|
| 204 |
-
"output_path": ".",
|
| 205 |
-
"submission_repo": "<THE HF MODEL ID of THIS REPO",
|
| 206 |
-
"time_limit": 7200,
|
| 207 |
-
"dataset": "usm3d/usm-test-data-x",
|
| 208 |
-
"submission_filenames": [
|
| 209 |
-
"submission.parquet"
|
| 210 |
-
]
|
| 211 |
-
}
|
| 212 |
-
|
| 213 |
-
param_path = Path('params.json')
|
| 214 |
-
|
| 215 |
-
if not param_path.exists():
|
| 216 |
-
print('params.json not found (this means we probably aren\'t in the test env). Using example params.')
|
| 217 |
-
params = exmaple_param_dict
|
| 218 |
-
else:
|
| 219 |
-
print('found params.json (this means we are probably in the test env). Using params from file.')
|
| 220 |
-
with param_path.open() as f:
|
| 221 |
-
params = json.load(f)
|
| 222 |
-
print(params)
|
| 223 |
-
return params
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
import webdataset as wds
|
| 228 |
-
import numpy as np
|
| 229 |
-
|
| 230 |
-
def get_dataset(decode='pil', proc=proc, split='train', dataset_type='webdataset'):
|
| 231 |
-
if LOCAL_DATADIR is None:
|
| 232 |
-
raise ValueError('LOCAL_DATADIR is not set. Please run setup() first.')
|
| 233 |
-
|
| 234 |
-
local_dir = Path(LOCAL_DATADIR)
|
| 235 |
-
if split != 'all':
|
| 236 |
-
local_dir = local_dir / split
|
| 237 |
-
|
| 238 |
-
paths = [str(p) for p in local_dir.rglob('*.tar.gz')]
|
| 239 |
-
|
| 240 |
-
dataset = wds.WebDataset(paths)
|
| 241 |
-
if decode is not None:
|
| 242 |
-
dataset = dataset.decode(decode)
|
| 243 |
-
else:
|
| 244 |
-
dataset = dataset.decode()
|
| 245 |
-
|
| 246 |
-
dataset = dataset.map(proc)
|
| 247 |
-
|
| 248 |
-
if dataset_type == 'webdataset':
|
| 249 |
-
return dataset
|
| 250 |
-
|
| 251 |
-
if dataset_type == 'hf':
|
| 252 |
-
import datasets
|
| 253 |
-
from datasets import Features, Value, Sequence, Image, Array2D
|
| 254 |
-
|
| 255 |
-
if split == 'train':
|
| 256 |
-
return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
|
| 257 |
-
elif split == 'val':
|
| 258 |
-
return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
packages/webdataset/numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl → notebooks/EDA.ipynb
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a847cfb0c6458dc4edfc707f30c6156345dbbc486ad651abd8bfad4f0ee659a
|
| 3 |
+
size 14355368
|
notebooks/example_on_training.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
packages/webdataset/PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287
|
| 3 |
-
size 701221
|
|
|
|
|
|
|
|
|
|
|
|
packages/webdataset/braceexpand-0.1.7-py2.py3-none-any.whl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:91332d53de7828103dcae5773fb43bc34950b0c8160e35e0f44c4427a3b85014
|
| 3 |
-
size 5923
|
|
|
|
|
|
|
|
|
|
|
|
packages/webdataset/webdataset-0.2.86-py3-none-any.whl
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:843a2b57c6356ebba25e811adf38a476da8e176f1b192f8bd5c8270daf1a6989
|
| 3 |
-
size 70378
|
|
|
|
|
|
|
|
|
|
|
|
read_write_colmap.py
DELETED
|
@@ -1,489 +0,0 @@
|
|
| 1 |
-
# Modified to read from bytes-like object by Dmytro Mishkin.
|
| 2 |
-
# The original license is below:
|
| 3 |
-
# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
|
| 4 |
-
# All rights reserved.
|
| 5 |
-
#
|
| 6 |
-
# Redistribution and use in source and binary forms, with or without
|
| 7 |
-
# modification, are permitted provided that the following conditions are met:
|
| 8 |
-
#
|
| 9 |
-
# * Redistributions of source code must retain the above copyright
|
| 10 |
-
# notice, this list of conditions and the following disclaimer.
|
| 11 |
-
#
|
| 12 |
-
# * Redistributions in binary form must reproduce the above copyright
|
| 13 |
-
# notice, this list of conditions and the following disclaimer in the
|
| 14 |
-
# documentation and/or other materials provided with the distribution.
|
| 15 |
-
#
|
| 16 |
-
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
|
| 17 |
-
# its contributors may be used to endorse or promote products derived
|
| 18 |
-
# from this software without specific prior written permission.
|
| 19 |
-
#
|
| 20 |
-
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 21 |
-
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 22 |
-
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| 23 |
-
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
|
| 24 |
-
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| 25 |
-
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| 26 |
-
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
| 27 |
-
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
| 28 |
-
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
| 29 |
-
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
| 30 |
-
# POSSIBILITY OF SUCH DAMAGE.
|
| 31 |
-
#
|
| 32 |
-
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
|
| 33 |
-
|
| 34 |
-
import os
|
| 35 |
-
import collections
|
| 36 |
-
import numpy as np
|
| 37 |
-
import struct
|
| 38 |
-
import argparse
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
CameraModel = collections.namedtuple(
|
| 42 |
-
"CameraModel", ["model_id", "model_name", "num_params"])
|
| 43 |
-
Camera = collections.namedtuple(
|
| 44 |
-
"Camera", ["id", "model", "width", "height", "params"])
|
| 45 |
-
BaseImage = collections.namedtuple(
|
| 46 |
-
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
|
| 47 |
-
Point3D = collections.namedtuple(
|
| 48 |
-
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
class Image(BaseImage):
|
| 52 |
-
def qvec2rotmat(self):
|
| 53 |
-
return qvec2rotmat(self.qvec)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
CAMERA_MODELS = {
|
| 57 |
-
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
|
| 58 |
-
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
|
| 59 |
-
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
|
| 60 |
-
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
|
| 61 |
-
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
|
| 62 |
-
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
|
| 63 |
-
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
|
| 64 |
-
CameraModel(model_id=7, model_name="FOV", num_params=5),
|
| 65 |
-
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
|
| 66 |
-
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
|
| 67 |
-
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
|
| 68 |
-
}
|
| 69 |
-
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model)
|
| 70 |
-
for camera_model in CAMERA_MODELS])
|
| 71 |
-
CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model)
|
| 72 |
-
for camera_model in CAMERA_MODELS])
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
|
| 76 |
-
"""Read and unpack the next bytes from a binary file.
|
| 77 |
-
:param fid:
|
| 78 |
-
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
|
| 79 |
-
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
|
| 80 |
-
:param endian_character: Any of {@, =, <, >, !}
|
| 81 |
-
:return: Tuple of read and unpacked values.
|
| 82 |
-
"""
|
| 83 |
-
data = fid.read(num_bytes)
|
| 84 |
-
return struct.unpack(endian_character + format_char_sequence, data)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
|
| 88 |
-
"""pack and write to a binary file.
|
| 89 |
-
:param fid:
|
| 90 |
-
:param data: data to send, if multiple elements are sent at the same time,
|
| 91 |
-
they should be encapsuled either in a list or a tuple
|
| 92 |
-
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
|
| 93 |
-
should be the same length as the data list or tuple
|
| 94 |
-
:param endian_character: Any of {@, =, <, >, !}
|
| 95 |
-
"""
|
| 96 |
-
if isinstance(data, (list, tuple)):
|
| 97 |
-
bytes = struct.pack(endian_character + format_char_sequence, *data)
|
| 98 |
-
else:
|
| 99 |
-
bytes = struct.pack(endian_character + format_char_sequence, data)
|
| 100 |
-
fid.write(bytes)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def read_cameras_text(path):
|
| 104 |
-
"""
|
| 105 |
-
see: src/base/reconstruction.cc
|
| 106 |
-
void Reconstruction::WriteCamerasText(const std::string& path)
|
| 107 |
-
void Reconstruction::ReadCamerasText(const std::string& path)
|
| 108 |
-
"""
|
| 109 |
-
cameras = {}
|
| 110 |
-
with open(path, "r") as fid:
|
| 111 |
-
while True:
|
| 112 |
-
line = fid.readline()
|
| 113 |
-
if not line:
|
| 114 |
-
break
|
| 115 |
-
line = line.strip()
|
| 116 |
-
if len(line) > 0 and line[0] != "#":
|
| 117 |
-
elems = line.split()
|
| 118 |
-
camera_id = int(elems[0])
|
| 119 |
-
model = elems[1]
|
| 120 |
-
width = int(elems[2])
|
| 121 |
-
height = int(elems[3])
|
| 122 |
-
params = np.array(tuple(map(float, elems[4:])))
|
| 123 |
-
cameras[camera_id] = Camera(id=camera_id, model=model,
|
| 124 |
-
width=width, height=height,
|
| 125 |
-
params=params)
|
| 126 |
-
return cameras
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def read_cameras_binary(path_to_model_file=None, fid=None):
|
| 130 |
-
"""
|
| 131 |
-
see: src/base/reconstruction.cc
|
| 132 |
-
void Reconstruction::WriteCamerasBinary(const std::string& path)
|
| 133 |
-
void Reconstruction::ReadCamerasBinary(const std::string& path)
|
| 134 |
-
"""
|
| 135 |
-
cameras = {}
|
| 136 |
-
if fid is None:
|
| 137 |
-
fid = open(path_to_model_file, "rb")
|
| 138 |
-
num_cameras = read_next_bytes(fid, 8, "Q")[0]
|
| 139 |
-
for _ in range(num_cameras):
|
| 140 |
-
camera_properties = read_next_bytes(
|
| 141 |
-
fid, num_bytes=24, format_char_sequence="iiQQ")
|
| 142 |
-
camera_id = camera_properties[0]
|
| 143 |
-
model_id = camera_properties[1]
|
| 144 |
-
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
|
| 145 |
-
width = camera_properties[2]
|
| 146 |
-
height = camera_properties[3]
|
| 147 |
-
num_params = CAMERA_MODEL_IDS[model_id].num_params
|
| 148 |
-
params = read_next_bytes(fid, num_bytes=8*num_params,
|
| 149 |
-
format_char_sequence="d"*num_params)
|
| 150 |
-
cameras[camera_id] = Camera(id=camera_id,
|
| 151 |
-
model=model_name,
|
| 152 |
-
width=width,
|
| 153 |
-
height=height,
|
| 154 |
-
params=np.array(params))
|
| 155 |
-
assert len(cameras) == num_cameras
|
| 156 |
-
if path_to_model_file is not None:
|
| 157 |
-
fid.close()
|
| 158 |
-
return cameras
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def write_cameras_text(cameras, path):
|
| 162 |
-
"""
|
| 163 |
-
see: src/base/reconstruction.cc
|
| 164 |
-
void Reconstruction::WriteCamerasText(const std::string& path)
|
| 165 |
-
void Reconstruction::ReadCamerasText(const std::string& path)
|
| 166 |
-
"""
|
| 167 |
-
HEADER = "# Camera list with one line of data per camera:\n" + \
|
| 168 |
-
"# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n" + \
|
| 169 |
-
"# Number of cameras: {}\n".format(len(cameras))
|
| 170 |
-
with open(path, "w") as fid:
|
| 171 |
-
fid.write(HEADER)
|
| 172 |
-
for _, cam in cameras.items():
|
| 173 |
-
to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
|
| 174 |
-
line = " ".join([str(elem) for elem in to_write])
|
| 175 |
-
fid.write(line + "\n")
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
def write_cameras_binary(cameras, path_to_model_file):
|
| 179 |
-
"""
|
| 180 |
-
see: src/base/reconstruction.cc
|
| 181 |
-
void Reconstruction::WriteCamerasBinary(const std::string& path)
|
| 182 |
-
void Reconstruction::ReadCamerasBinary(const std::string& path)
|
| 183 |
-
"""
|
| 184 |
-
with open(path_to_model_file, "wb") as fid:
|
| 185 |
-
write_next_bytes(fid, len(cameras), "Q")
|
| 186 |
-
for _, cam in cameras.items():
|
| 187 |
-
model_id = CAMERA_MODEL_NAMES[cam.model].model_id
|
| 188 |
-
camera_properties = [cam.id,
|
| 189 |
-
model_id,
|
| 190 |
-
cam.width,
|
| 191 |
-
cam.height]
|
| 192 |
-
write_next_bytes(fid, camera_properties, "iiQQ")
|
| 193 |
-
for p in cam.params:
|
| 194 |
-
write_next_bytes(fid, float(p), "d")
|
| 195 |
-
return cameras
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
def read_images_text(path):
|
| 199 |
-
"""
|
| 200 |
-
see: src/base/reconstruction.cc
|
| 201 |
-
void Reconstruction::ReadImagesText(const std::string& path)
|
| 202 |
-
void Reconstruction::WriteImagesText(const std::string& path)
|
| 203 |
-
"""
|
| 204 |
-
images = {}
|
| 205 |
-
with open(path, "r") as fid:
|
| 206 |
-
while True:
|
| 207 |
-
line = fid.readline()
|
| 208 |
-
if not line:
|
| 209 |
-
break
|
| 210 |
-
line = line.strip()
|
| 211 |
-
if len(line) > 0 and line[0] != "#":
|
| 212 |
-
elems = line.split()
|
| 213 |
-
image_id = int(elems[0])
|
| 214 |
-
qvec = np.array(tuple(map(float, elems[1:5])))
|
| 215 |
-
tvec = np.array(tuple(map(float, elems[5:8])))
|
| 216 |
-
camera_id = int(elems[8])
|
| 217 |
-
image_name = elems[9]
|
| 218 |
-
elems = fid.readline().split()
|
| 219 |
-
xys = np.column_stack([tuple(map(float, elems[0::3])),
|
| 220 |
-
tuple(map(float, elems[1::3]))])
|
| 221 |
-
point3D_ids = np.array(tuple(map(int, elems[2::3])))
|
| 222 |
-
images[image_id] = Image(
|
| 223 |
-
id=image_id, qvec=qvec, tvec=tvec,
|
| 224 |
-
camera_id=camera_id, name=image_name,
|
| 225 |
-
xys=xys, point3D_ids=point3D_ids)
|
| 226 |
-
return images
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
def read_images_binary(path_to_model_file=None, fid=None):
|
| 230 |
-
"""
|
| 231 |
-
see: src/base/reconstruction.cc
|
| 232 |
-
void Reconstruction::ReadImagesBinary(const std::string& path)
|
| 233 |
-
void Reconstruction::WriteImagesBinary(const std::string& path)
|
| 234 |
-
"""
|
| 235 |
-
images = {}
|
| 236 |
-
if fid is None:
|
| 237 |
-
fid = open(path_to_model_file, "rb")
|
| 238 |
-
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
|
| 239 |
-
for _ in range(num_reg_images):
|
| 240 |
-
binary_image_properties = read_next_bytes(
|
| 241 |
-
fid, num_bytes=64, format_char_sequence="idddddddi")
|
| 242 |
-
image_id = binary_image_properties[0]
|
| 243 |
-
qvec = np.array(binary_image_properties[1:5])
|
| 244 |
-
tvec = np.array(binary_image_properties[5:8])
|
| 245 |
-
camera_id = binary_image_properties[8]
|
| 246 |
-
image_name = ""
|
| 247 |
-
current_char = read_next_bytes(fid, 1, "c")[0]
|
| 248 |
-
while current_char != b"\x00": # look for the ASCII 0 entry
|
| 249 |
-
image_name += current_char.decode("utf-8")
|
| 250 |
-
current_char = read_next_bytes(fid, 1, "c")[0]
|
| 251 |
-
num_points2D = read_next_bytes(fid, num_bytes=8,
|
| 252 |
-
format_char_sequence="Q")[0]
|
| 253 |
-
x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
|
| 254 |
-
format_char_sequence="ddq"*num_points2D)
|
| 255 |
-
xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
|
| 256 |
-
tuple(map(float, x_y_id_s[1::3]))])
|
| 257 |
-
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
|
| 258 |
-
images[image_id] = Image(
|
| 259 |
-
id=image_id, qvec=qvec, tvec=tvec,
|
| 260 |
-
camera_id=camera_id, name=image_name,
|
| 261 |
-
xys=xys, point3D_ids=point3D_ids)
|
| 262 |
-
if path_to_model_file is not None:
|
| 263 |
-
fid.close()
|
| 264 |
-
return images
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
def write_images_text(images, path):
|
| 268 |
-
"""
|
| 269 |
-
see: src/base/reconstruction.cc
|
| 270 |
-
void Reconstruction::ReadImagesText(const std::string& path)
|
| 271 |
-
void Reconstruction::WriteImagesText(const std::string& path)
|
| 272 |
-
"""
|
| 273 |
-
if len(images) == 0:
|
| 274 |
-
mean_observations = 0
|
| 275 |
-
else:
|
| 276 |
-
mean_observations = sum((len(img.point3D_ids) for _, img in images.items()))/len(images)
|
| 277 |
-
HEADER = "# Image list with two lines of data per image:\n" + \
|
| 278 |
-
"# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n" + \
|
| 279 |
-
"# POINTS2D[] as (X, Y, POINT3D_ID)\n" + \
|
| 280 |
-
"# Number of images: {}, mean observations per image: {}\n".format(len(images), mean_observations)
|
| 281 |
-
|
| 282 |
-
with open(path, "w") as fid:
|
| 283 |
-
fid.write(HEADER)
|
| 284 |
-
for _, img in images.items():
|
| 285 |
-
image_header = [img.id, *img.qvec, *img.tvec, img.camera_id, img.name]
|
| 286 |
-
first_line = " ".join(map(str, image_header))
|
| 287 |
-
fid.write(first_line + "\n")
|
| 288 |
-
|
| 289 |
-
points_strings = []
|
| 290 |
-
for xy, point3D_id in zip(img.xys, img.point3D_ids):
|
| 291 |
-
points_strings.append(" ".join(map(str, [*xy, point3D_id])))
|
| 292 |
-
fid.write(" ".join(points_strings) + "\n")
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
def write_images_binary(images, path_to_model_file):
|
| 296 |
-
"""
|
| 297 |
-
see: src/base/reconstruction.cc
|
| 298 |
-
void Reconstruction::ReadImagesBinary(const std::string& path)
|
| 299 |
-
void Reconstruction::WriteImagesBinary(const std::string& path)
|
| 300 |
-
"""
|
| 301 |
-
with open(path_to_model_file, "wb") as fid:
|
| 302 |
-
write_next_bytes(fid, len(images), "Q")
|
| 303 |
-
for _, img in images.items():
|
| 304 |
-
write_next_bytes(fid, img.id, "i")
|
| 305 |
-
write_next_bytes(fid, img.qvec.tolist(), "dddd")
|
| 306 |
-
write_next_bytes(fid, img.tvec.tolist(), "ddd")
|
| 307 |
-
write_next_bytes(fid, img.camera_id, "i")
|
| 308 |
-
for char in img.name:
|
| 309 |
-
write_next_bytes(fid, char.encode("utf-8"), "c")
|
| 310 |
-
write_next_bytes(fid, b"\x00", "c")
|
| 311 |
-
write_next_bytes(fid, len(img.point3D_ids), "Q")
|
| 312 |
-
for xy, p3d_id in zip(img.xys, img.point3D_ids):
|
| 313 |
-
write_next_bytes(fid, [*xy, p3d_id], "ddq")
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
def read_points3D_text(path):
|
| 317 |
-
"""
|
| 318 |
-
see: src/base/reconstruction.cc
|
| 319 |
-
void Reconstruction::ReadPoints3DText(const std::string& path)
|
| 320 |
-
void Reconstruction::WritePoints3DText(const std::string& path)
|
| 321 |
-
"""
|
| 322 |
-
points3D = {}
|
| 323 |
-
with open(path, "r") as fid:
|
| 324 |
-
while True:
|
| 325 |
-
line = fid.readline()
|
| 326 |
-
if not line:
|
| 327 |
-
break
|
| 328 |
-
line = line.strip()
|
| 329 |
-
if len(line) > 0 and line[0] != "#":
|
| 330 |
-
elems = line.split()
|
| 331 |
-
point3D_id = int(elems[0])
|
| 332 |
-
xyz = np.array(tuple(map(float, elems[1:4])))
|
| 333 |
-
rgb = np.array(tuple(map(int, elems[4:7])))
|
| 334 |
-
error = float(elems[7])
|
| 335 |
-
image_ids = np.array(tuple(map(int, elems[8::2])))
|
| 336 |
-
point2D_idxs = np.array(tuple(map(int, elems[9::2])))
|
| 337 |
-
points3D[point3D_id] = Point3D(id=point3D_id, xyz=xyz, rgb=rgb,
|
| 338 |
-
error=error, image_ids=image_ids,
|
| 339 |
-
point2D_idxs=point2D_idxs)
|
| 340 |
-
return points3D
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
def read_points3D_binary(path_to_model_file=None, fid=None):
|
| 344 |
-
"""
|
| 345 |
-
see: src/base/reconstruction.cc
|
| 346 |
-
void Reconstruction::ReadPoints3DBinary(const std::string& path)
|
| 347 |
-
void Reconstruction::WritePoints3DBinary(const std::string& path)
|
| 348 |
-
"""
|
| 349 |
-
points3D = {}
|
| 350 |
-
if fid is None:
|
| 351 |
-
fid = open(path_to_model_file, "rb")
|
| 352 |
-
num_points = read_next_bytes(fid, 8, "Q")[0]
|
| 353 |
-
for _ in range(num_points):
|
| 354 |
-
binary_point_line_properties = read_next_bytes(
|
| 355 |
-
fid, num_bytes=43, format_char_sequence="QdddBBBd")
|
| 356 |
-
point3D_id = binary_point_line_properties[0]
|
| 357 |
-
xyz = np.array(binary_point_line_properties[1:4])
|
| 358 |
-
rgb = np.array(binary_point_line_properties[4:7])
|
| 359 |
-
error = np.array(binary_point_line_properties[7])
|
| 360 |
-
track_length = read_next_bytes(
|
| 361 |
-
fid, num_bytes=8, format_char_sequence="Q")[0]
|
| 362 |
-
track_elems = read_next_bytes(
|
| 363 |
-
fid, num_bytes=8*track_length,
|
| 364 |
-
format_char_sequence="ii"*track_length)
|
| 365 |
-
image_ids = np.array(tuple(map(int, track_elems[0::2])))
|
| 366 |
-
point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
|
| 367 |
-
points3D[point3D_id] = Point3D(
|
| 368 |
-
id=point3D_id, xyz=xyz, rgb=rgb,
|
| 369 |
-
error=error, image_ids=image_ids,
|
| 370 |
-
point2D_idxs=point2D_idxs)
|
| 371 |
-
if path_to_model_file is not None:
|
| 372 |
-
fid.close()
|
| 373 |
-
return points3D
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
def write_points3D_text(points3D, path):
|
| 377 |
-
"""
|
| 378 |
-
see: src/base/reconstruction.cc
|
| 379 |
-
void Reconstruction::ReadPoints3DText(const std::string& path)
|
| 380 |
-
void Reconstruction::WritePoints3DText(const std::string& path)
|
| 381 |
-
"""
|
| 382 |
-
if len(points3D) == 0:
|
| 383 |
-
mean_track_length = 0
|
| 384 |
-
else:
|
| 385 |
-
mean_track_length = sum((len(pt.image_ids) for _, pt in points3D.items()))/len(points3D)
|
| 386 |
-
HEADER = "# 3D point list with one line of data per point:\n" + \
|
| 387 |
-
"# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n" + \
|
| 388 |
-
"# Number of points: {}, mean track length: {}\n".format(len(points3D), mean_track_length)
|
| 389 |
-
|
| 390 |
-
with open(path, "w") as fid:
|
| 391 |
-
fid.write(HEADER)
|
| 392 |
-
for _, pt in points3D.items():
|
| 393 |
-
point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
|
| 394 |
-
fid.write(" ".join(map(str, point_header)) + " ")
|
| 395 |
-
track_strings = []
|
| 396 |
-
for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
|
| 397 |
-
track_strings.append(" ".join(map(str, [image_id, point2D])))
|
| 398 |
-
fid.write(" ".join(track_strings) + "\n")
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
def write_points3D_binary(points3D, path_to_model_file):
|
| 402 |
-
"""
|
| 403 |
-
see: src/base/reconstruction.cc
|
| 404 |
-
void Reconstruction::ReadPoints3DBinary(const std::string& path)
|
| 405 |
-
void Reconstruction::WritePoints3DBinary(const std::string& path)
|
| 406 |
-
"""
|
| 407 |
-
with open(path_to_model_file, "wb") as fid:
|
| 408 |
-
write_next_bytes(fid, len(points3D), "Q")
|
| 409 |
-
for _, pt in points3D.items():
|
| 410 |
-
write_next_bytes(fid, pt.id, "Q")
|
| 411 |
-
write_next_bytes(fid, pt.xyz.tolist(), "ddd")
|
| 412 |
-
write_next_bytes(fid, pt.rgb.tolist(), "BBB")
|
| 413 |
-
write_next_bytes(fid, pt.error, "d")
|
| 414 |
-
track_length = pt.image_ids.shape[0]
|
| 415 |
-
write_next_bytes(fid, track_length, "Q")
|
| 416 |
-
for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
|
| 417 |
-
write_next_bytes(fid, [image_id, point2D_id], "ii")
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
def detect_model_format(path, ext):
|
| 421 |
-
if os.path.isfile(os.path.join(path, "cameras" + ext)) and \
|
| 422 |
-
os.path.isfile(os.path.join(path, "images" + ext)) and \
|
| 423 |
-
os.path.isfile(os.path.join(path, "points3D" + ext)):
|
| 424 |
-
print("Detected model format: '" + ext + "'")
|
| 425 |
-
return True
|
| 426 |
-
|
| 427 |
-
return False
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
def read_model(path, ext=""):
|
| 431 |
-
# try to detect the extension automatically
|
| 432 |
-
if ext == "":
|
| 433 |
-
if detect_model_format(path, ".bin"):
|
| 434 |
-
ext = ".bin"
|
| 435 |
-
elif detect_model_format(path, ".txt"):
|
| 436 |
-
ext = ".txt"
|
| 437 |
-
else:
|
| 438 |
-
print("Provide model format: '.bin' or '.txt'")
|
| 439 |
-
return
|
| 440 |
-
|
| 441 |
-
if ext == ".txt":
|
| 442 |
-
cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
|
| 443 |
-
images = read_images_text(os.path.join(path, "images" + ext))
|
| 444 |
-
points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
|
| 445 |
-
else:
|
| 446 |
-
cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
|
| 447 |
-
images = read_images_binary(os.path.join(path, "images" + ext))
|
| 448 |
-
points3D = read_points3D_binary(os.path.join(path, "points3D") + ext)
|
| 449 |
-
return cameras, images, points3D
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
def write_model(cameras, images, points3D, path, ext=".bin"):
|
| 453 |
-
if ext == ".txt":
|
| 454 |
-
write_cameras_text(cameras, os.path.join(path, "cameras" + ext))
|
| 455 |
-
write_images_text(images, os.path.join(path, "images" + ext))
|
| 456 |
-
write_points3D_text(points3D, os.path.join(path, "points3D") + ext)
|
| 457 |
-
else:
|
| 458 |
-
write_cameras_binary(cameras, os.path.join(path, "cameras" + ext))
|
| 459 |
-
write_images_binary(images, os.path.join(path, "images" + ext))
|
| 460 |
-
write_points3D_binary(points3D, os.path.join(path, "points3D") + ext)
|
| 461 |
-
return cameras, images, points3D
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
def qvec2rotmat(qvec):
|
| 465 |
-
return np.array([
|
| 466 |
-
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
|
| 467 |
-
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
|
| 468 |
-
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
|
| 469 |
-
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
|
| 470 |
-
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
|
| 471 |
-
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
|
| 472 |
-
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
|
| 473 |
-
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
|
| 474 |
-
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
def rotmat2qvec(R):
|
| 478 |
-
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
|
| 479 |
-
K = np.array([
|
| 480 |
-
[Rxx - Ryy - Rzz, 0, 0, 0],
|
| 481 |
-
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
|
| 482 |
-
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
|
| 483 |
-
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0
|
| 484 |
-
eigvals, eigvecs = np.linalg.eigh(K)
|
| 485 |
-
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
|
| 486 |
-
if qvec[0] < 0:
|
| 487 |
-
qvec *= -1
|
| 488 |
-
return qvec
|
| 489 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
script.py
CHANGED
|
@@ -10,34 +10,55 @@
|
|
| 10 |
### You can use any additional files and subdirectories to organize your code.
|
| 11 |
|
| 12 |
'''---compulsory---'''
|
| 13 |
-
|
| 14 |
-
import
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
# pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
|
| 40 |
-
install_package_from_local_file('webdataset')
|
| 41 |
# install_package_from_local_file('tqdm')
|
| 42 |
|
| 43 |
### Here you can import any library or module you want.
|
|
@@ -52,34 +73,11 @@ from transformers import AutoTokenizer
|
|
| 52 |
import os
|
| 53 |
import time
|
| 54 |
import io
|
| 55 |
-
from read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
| 56 |
from PIL import Image as PImage
|
| 57 |
import numpy as np
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
out = {}
|
| 62 |
-
for k, v in row.items():
|
| 63 |
-
colname = k.split('.')[0]
|
| 64 |
-
if colname in {'ade20k', 'depthcm', 'gestalt'}:
|
| 65 |
-
if colname in out:
|
| 66 |
-
out[colname].append(v)
|
| 67 |
-
else:
|
| 68 |
-
out[colname] = [v]
|
| 69 |
-
elif colname in {'wireframe', 'mesh'}:
|
| 70 |
-
# out.update({a: b.tolist() for a,b in v.items()})
|
| 71 |
-
out.update({a: b for a,b in v.items()})
|
| 72 |
-
elif colname in 'kr':
|
| 73 |
-
out[colname.upper()] = v
|
| 74 |
-
else:
|
| 75 |
-
out[colname] = v
|
| 76 |
-
|
| 77 |
-
return Sample(out)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
class Sample(Dict):
|
| 81 |
-
def __repr__(self):
|
| 82 |
-
return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
|
| 83 |
|
| 84 |
def convert_entry_to_human_readable(entry):
|
| 85 |
out = {}
|
|
@@ -102,44 +100,47 @@ def convert_entry_to_human_readable(entry):
|
|
| 102 |
|
| 103 |
'''---end of compulsory---'''
|
| 104 |
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
"""
|
| 107 |
-
|
| 108 |
|
| 109 |
Parameters:
|
| 110 |
-
|
| 111 |
-
|
| 112 |
"""
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
"-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory
|
| 117 |
-
"--platform", "manylinux1_x86_64", # Specify the platform
|
| 118 |
-
"--python-version", "38", # Specify the Python version
|
| 119 |
-
"--only-binary=:all:"]) # Download only binary packages
|
| 120 |
-
print(f'Package "{package_name}" downloaded successfully')
|
| 121 |
-
except subprocess.CalledProcessError as e:
|
| 122 |
-
print(f'Failed to downloaded package "{package_name}". Error: {e}')
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
### The part below is used to define and test your solution.
|
| 126 |
|
| 127 |
if __name__ == "__main__":
|
| 128 |
from handcrafted_solution import predict
|
| 129 |
print ("------------ Loading dataset------------ ")
|
| 130 |
params = hoho.get_params()
|
| 131 |
dataset = hoho.get_dataset(decode=None, split='all', dataset_type='webdataset')
|
|
|
|
| 132 |
print('------------ Now you can do your solution ---------------')
|
| 133 |
solution = []
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
print('------------ Saving results ---------------')
|
| 143 |
-
|
| 144 |
-
sub.to_parquet(Path(params['output_path']) / "submission.parquet")
|
| 145 |
print("------------ Done ------------ ")
|
|
|
|
| 10 |
### You can use any additional files and subdirectories to organize your code.
|
| 11 |
|
| 12 |
'''---compulsory---'''
|
| 13 |
+
# import subprocess
|
| 14 |
+
# from pathlib import Path
|
| 15 |
+
# def install_package_from_local_file(package_name, folder='packages'):
|
| 16 |
+
# """
|
| 17 |
+
# Installs a package from a local .whl file or a directory containing .whl files using pip.
|
| 18 |
+
|
| 19 |
+
# Parameters:
|
| 20 |
+
# path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
|
| 21 |
+
# """
|
| 22 |
+
# try:
|
| 23 |
+
# pth = str(Path(folder) / package_name)
|
| 24 |
+
# subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
|
| 25 |
+
# "--no-index", # Do not use package index
|
| 26 |
+
# "--find-links", pth, # Look for packages in the specified directory or at the file
|
| 27 |
+
# package_name]) # Specify the package to install
|
| 28 |
+
# print(f"Package installed successfully from {pth}")
|
| 29 |
+
# except subprocess.CalledProcessError as e:
|
| 30 |
+
# print(f"Failed to install package from {pth}. Error: {e}")
|
| 31 |
+
|
| 32 |
+
# install_package_from_local_file('hoho')
|
| 33 |
|
| 34 |
+
import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
|
| 35 |
+
# import subprocess
|
| 36 |
+
# import importlib
|
| 37 |
+
# from pathlib import Path
|
| 38 |
+
# import subprocess
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# ### The function below is useful for installing additional python wheels.
|
| 42 |
+
# def install_package_from_local_file(package_name, folder='packages'):
|
| 43 |
+
# """
|
| 44 |
+
# Installs a package from a local .whl file or a directory containing .whl files using pip.
|
| 45 |
+
|
| 46 |
+
# Parameters:
|
| 47 |
+
# path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
|
| 48 |
+
# """
|
| 49 |
+
# try:
|
| 50 |
+
# pth = str(Path(folder) / package_name)
|
| 51 |
+
# subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
|
| 52 |
+
# "--no-index", # Do not use package index
|
| 53 |
+
# "--find-links", pth, # Look for packages in the specified directory or at the file
|
| 54 |
+
# package_name]) # Specify the package to install
|
| 55 |
+
# print(f"Package installed successfully from {pth}")
|
| 56 |
+
# except subprocess.CalledProcessError as e:
|
| 57 |
+
# print(f"Failed to install package from {pth}. Error: {e}")
|
| 58 |
|
| 59 |
|
| 60 |
# pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
|
| 61 |
+
# install_package_from_local_file('webdataset')
|
| 62 |
# install_package_from_local_file('tqdm')
|
| 63 |
|
| 64 |
### Here you can import any library or module you want.
|
|
|
|
| 73 |
import os
|
| 74 |
import time
|
| 75 |
import io
|
|
|
|
| 76 |
from PIL import Image as PImage
|
| 77 |
import numpy as np
|
| 78 |
|
| 79 |
+
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
| 80 |
+
from hoho import proc, Sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
def convert_entry_to_human_readable(entry):
|
| 83 |
out = {}
|
|
|
|
| 100 |
|
| 101 |
'''---end of compulsory---'''
|
| 102 |
|
| 103 |
+
### The part below is used to define and test your solution.
|
| 104 |
+
|
| 105 |
+
from pathlib import Path
|
| 106 |
+
def save_submission(submission, path):
|
| 107 |
"""
|
| 108 |
+
Saves the submission to a specified path.
|
| 109 |
|
| 110 |
Parameters:
|
| 111 |
+
submission (List[Dict[]]): The submission to save.
|
| 112 |
+
path (str): The path to save the submission to.
|
| 113 |
"""
|
| 114 |
+
sub = pd.DataFrame(submission, columns=["__key__", "wf_vertices", "wf_edges", "edge_semantics"])
|
| 115 |
+
sub.to_parquet(path)
|
| 116 |
+
print(f"Submission saved to {path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
if __name__ == "__main__":
|
| 119 |
from handcrafted_solution import predict
|
| 120 |
print ("------------ Loading dataset------------ ")
|
| 121 |
params = hoho.get_params()
|
| 122 |
dataset = hoho.get_dataset(decode=None, split='all', dataset_type='webdataset')
|
| 123 |
+
|
| 124 |
print('------------ Now you can do your solution ---------------')
|
| 125 |
solution = []
|
| 126 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 127 |
+
with ProcessPoolExecutor(max_workers=8) as pool:
|
| 128 |
+
results = []
|
| 129 |
+
for i, sample in enumerate(tqdm(dataset)):
|
| 130 |
+
results.append(pool.submit(predict, sample, visualize=False))
|
| 131 |
+
|
| 132 |
+
for i, result in enumerate(tqdm(results)):
|
| 133 |
+
key, pred_vertices, pred_edges, semantics = result.result()
|
| 134 |
+
solution.append({
|
| 135 |
+
'__key__': key,
|
| 136 |
+
'wf_vertices': pred_vertices.tolist(),
|
| 137 |
+
'wf_edges': pred_edges,
|
| 138 |
+
'edge_semantics': semantics,
|
| 139 |
+
})
|
| 140 |
+
if i % 100 == 0:
|
| 141 |
+
# incrementally save the results in case we run out of time
|
| 142 |
+
print(f"Processed {i} samples")
|
| 143 |
+
# save_submission(solution, Path(params['output_path']) / "submission.parquet")
|
| 144 |
print('------------ Saving results ---------------')
|
| 145 |
+
save_submission(solution, Path(params['output_path']) / "submission.parquet")
|
|
|
|
| 146 |
print("------------ Done ------------ ")
|
viz3d.py
DELETED
|
@@ -1,302 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
"""
|
| 3 |
-
Copyright [2022] [Paul-Edouard Sarlin and Philipp Lindenberger]
|
| 4 |
-
|
| 5 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
-
you may not use this file except in compliance with the License.
|
| 7 |
-
You may obtain a copy of the License at
|
| 8 |
-
|
| 9 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
-
|
| 11 |
-
Unless required by applicable law or agreed to in writing, software
|
| 12 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
-
See the License for the specific language governing permissions and
|
| 15 |
-
limitations under the License.
|
| 16 |
-
|
| 17 |
-
3D visualization based on plotly.
|
| 18 |
-
Works for a small number of points and cameras, might be slow otherwise.
|
| 19 |
-
|
| 20 |
-
1) Initialize a figure with `init_figure`
|
| 21 |
-
2) Add 3D points, camera frustums, or both as a pycolmap.Reconstruction
|
| 22 |
-
|
| 23 |
-
Written by Paul-Edouard Sarlin and Philipp Lindenberger.
|
| 24 |
-
"""
|
| 25 |
-
# Slightly modified by Dmytro Mishkin
|
| 26 |
-
|
| 27 |
-
from typing import Optional
|
| 28 |
-
import numpy as np
|
| 29 |
-
import pycolmap
|
| 30 |
-
import plotly.graph_objects as go
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
### Some helper functions for geometry
|
| 34 |
-
def qvec2rotmat(qvec):
|
| 35 |
-
return np.array([
|
| 36 |
-
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
|
| 37 |
-
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
|
| 38 |
-
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
|
| 39 |
-
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
|
| 40 |
-
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
|
| 41 |
-
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
|
| 42 |
-
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
|
| 43 |
-
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
|
| 44 |
-
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def to_homogeneous(points):
|
| 48 |
-
pad = np.ones((points.shape[:-1]+(1,)), dtype=points.dtype)
|
| 49 |
-
return np.concatenate([points, pad], axis=-1)
|
| 50 |
-
|
| 51 |
-
def t_to_proj_center(qvec, tvec):
|
| 52 |
-
Rr = qvec2rotmat(qvec)
|
| 53 |
-
tt = (-Rr.T) @ tvec
|
| 54 |
-
return tt
|
| 55 |
-
|
| 56 |
-
def calib(params):
|
| 57 |
-
out = np.eye(3)
|
| 58 |
-
if len(params) == 3:
|
| 59 |
-
out[0,0] = params[0]
|
| 60 |
-
out[1,1] = params[0]
|
| 61 |
-
out[0,2] = params[1]
|
| 62 |
-
out[1,2] = params[2]
|
| 63 |
-
else:
|
| 64 |
-
out[0,0] = params[0]
|
| 65 |
-
out[1,1] = params[1]
|
| 66 |
-
out[0,2] = params[2]
|
| 67 |
-
out[1,2] = params[3]
|
| 68 |
-
return out
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
### Plotting functions
|
| 72 |
-
|
| 73 |
-
def init_figure(height: int = 800) -> go.Figure:
|
| 74 |
-
"""Initialize a 3D figure."""
|
| 75 |
-
fig = go.Figure()
|
| 76 |
-
axes = dict(
|
| 77 |
-
visible=False,
|
| 78 |
-
showbackground=False,
|
| 79 |
-
showgrid=False,
|
| 80 |
-
showline=False,
|
| 81 |
-
showticklabels=True,
|
| 82 |
-
autorange=True,
|
| 83 |
-
)
|
| 84 |
-
fig.update_layout(
|
| 85 |
-
template="plotly_dark",
|
| 86 |
-
height=height,
|
| 87 |
-
scene_camera=dict(
|
| 88 |
-
eye=dict(x=0., y=-.1, z=-2),
|
| 89 |
-
up=dict(x=0, y=-1., z=0),
|
| 90 |
-
projection=dict(type="orthographic")),
|
| 91 |
-
scene=dict(
|
| 92 |
-
xaxis=axes,
|
| 93 |
-
yaxis=axes,
|
| 94 |
-
zaxis=axes,
|
| 95 |
-
aspectmode='data',
|
| 96 |
-
dragmode='orbit',
|
| 97 |
-
),
|
| 98 |
-
margin=dict(l=0, r=0, b=0, t=0, pad=0),
|
| 99 |
-
legend=dict(
|
| 100 |
-
orientation="h",
|
| 101 |
-
yanchor="top",
|
| 102 |
-
y=0.99,
|
| 103 |
-
xanchor="left",
|
| 104 |
-
x=0.1
|
| 105 |
-
),
|
| 106 |
-
)
|
| 107 |
-
return fig
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def plot_lines_3d(
|
| 111 |
-
fig: go.Figure,
|
| 112 |
-
pts: np.ndarray,
|
| 113 |
-
color: str = 'rgba(255, 255, 255, 1)',
|
| 114 |
-
ps: int = 2,
|
| 115 |
-
colorscale: Optional[str] = None,
|
| 116 |
-
name: Optional[str] = None):
|
| 117 |
-
"""Plot a set of 3D points."""
|
| 118 |
-
x = pts[..., 0]
|
| 119 |
-
y = pts[..., 1]
|
| 120 |
-
z = pts[..., 2]
|
| 121 |
-
traces = [go.Scatter3d(x=x1, y=y1, z=z1,
|
| 122 |
-
mode='lines',
|
| 123 |
-
line=dict(color=color, width=2)) for x1, y1, z1 in zip(x,y,z)]
|
| 124 |
-
for t in traces:
|
| 125 |
-
fig.add_trace(t)
|
| 126 |
-
fig.update_traces(showlegend=False)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def plot_points(
|
| 130 |
-
fig: go.Figure,
|
| 131 |
-
pts: np.ndarray,
|
| 132 |
-
color: str = 'rgba(255, 0, 0, 1)',
|
| 133 |
-
ps: int = 2,
|
| 134 |
-
colorscale: Optional[str] = None,
|
| 135 |
-
name: Optional[str] = None):
|
| 136 |
-
"""Plot a set of 3D points."""
|
| 137 |
-
x, y, z = pts.T
|
| 138 |
-
tr = go.Scatter3d(
|
| 139 |
-
x=x, y=y, z=z, mode='markers', name=name, legendgroup=name,
|
| 140 |
-
marker=dict(
|
| 141 |
-
size=ps, color=color, line_width=0.0, colorscale=colorscale))
|
| 142 |
-
fig.add_trace(tr)
|
| 143 |
-
|
| 144 |
-
def plot_camera(
|
| 145 |
-
fig: go.Figure,
|
| 146 |
-
R: np.ndarray,
|
| 147 |
-
t: np.ndarray,
|
| 148 |
-
K: np.ndarray,
|
| 149 |
-
color: str = 'rgb(0, 0, 255)',
|
| 150 |
-
name: Optional[str] = None,
|
| 151 |
-
legendgroup: Optional[str] = None,
|
| 152 |
-
size: float = 1.0):
|
| 153 |
-
"""Plot a camera frustum from pose and intrinsic matrix."""
|
| 154 |
-
W, H = K[0, 2]*2, K[1, 2]*2
|
| 155 |
-
corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]])
|
| 156 |
-
if size is not None:
|
| 157 |
-
image_extent = max(size * W / 1024.0, size * H / 1024.0)
|
| 158 |
-
world_extent = max(W, H) / (K[0, 0] + K[1, 1]) / 0.5
|
| 159 |
-
scale = 0.5 * image_extent / world_extent
|
| 160 |
-
else:
|
| 161 |
-
scale = 1.0
|
| 162 |
-
corners = to_homogeneous(corners) @ np.linalg.inv(K).T
|
| 163 |
-
corners = (corners / 2 * scale) @ R.T + t
|
| 164 |
-
|
| 165 |
-
x, y, z = corners.T
|
| 166 |
-
rect = go.Scatter3d(
|
| 167 |
-
x=x, y=y, z=z, line=dict(color=color), legendgroup=legendgroup,
|
| 168 |
-
name=name, marker=dict(size=0.0001), showlegend=False)
|
| 169 |
-
fig.add_trace(rect)
|
| 170 |
-
|
| 171 |
-
x, y, z = np.concatenate(([t], corners)).T
|
| 172 |
-
i = [0, 0, 0, 0]
|
| 173 |
-
j = [1, 2, 3, 4]
|
| 174 |
-
k = [2, 3, 4, 1]
|
| 175 |
-
|
| 176 |
-
pyramid = go.Mesh3d(
|
| 177 |
-
x=x, y=y, z=z, color=color, i=i, j=j, k=k,
|
| 178 |
-
legendgroup=legendgroup, name=name, showlegend=False)
|
| 179 |
-
fig.add_trace(pyramid)
|
| 180 |
-
triangles = np.vstack((i, j, k)).T
|
| 181 |
-
vertices = np.concatenate(([t], corners))
|
| 182 |
-
tri_points = np.array([
|
| 183 |
-
vertices[i] for i in triangles.reshape(-1)
|
| 184 |
-
])
|
| 185 |
-
|
| 186 |
-
x, y, z = tri_points.T
|
| 187 |
-
pyramid = go.Scatter3d(
|
| 188 |
-
x=x, y=y, z=z, mode='lines', legendgroup=legendgroup,
|
| 189 |
-
name=name, line=dict(color=color, width=1), showlegend=False)
|
| 190 |
-
fig.add_trace(pyramid)
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
def plot_camera_colmap(
|
| 194 |
-
fig: go.Figure,
|
| 195 |
-
image: pycolmap.Image,
|
| 196 |
-
camera: pycolmap.Camera,
|
| 197 |
-
name: Optional[str] = None,
|
| 198 |
-
**kwargs):
|
| 199 |
-
"""Plot a camera frustum from PyCOLMAP objects"""
|
| 200 |
-
intr = calib(camera.params)
|
| 201 |
-
if intr[0][0] > 10000:
|
| 202 |
-
print("Bad camera")
|
| 203 |
-
return
|
| 204 |
-
plot_camera(
|
| 205 |
-
fig,
|
| 206 |
-
qvec2rotmat(image.qvec).T,
|
| 207 |
-
t_to_proj_center(image.qvec, image.tvec),
|
| 208 |
-
intr,#calibration_matrix(),
|
| 209 |
-
name=name or str(image.id),
|
| 210 |
-
**kwargs)
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
def plot_cameras(
|
| 214 |
-
fig: go.Figure,
|
| 215 |
-
reconstruction,#: pycolmap.Reconstruction,
|
| 216 |
-
**kwargs):
|
| 217 |
-
"""Plot a camera as a cone with camera frustum."""
|
| 218 |
-
for image_id, image in reconstruction["images"].items():
|
| 219 |
-
plot_camera_colmap(
|
| 220 |
-
fig, image, reconstruction["cameras"][image.camera_id], **kwargs)
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
def plot_reconstruction(
|
| 224 |
-
fig: go.Figure,
|
| 225 |
-
rec,
|
| 226 |
-
color: str = 'rgb(0, 0, 255)',
|
| 227 |
-
name: Optional[str] = None,
|
| 228 |
-
points: bool = True,
|
| 229 |
-
cameras: bool = True,
|
| 230 |
-
cs: float = 1.0,
|
| 231 |
-
single_color_points=False,
|
| 232 |
-
camera_color='rgba(0, 255, 0, 0.5)'):
|
| 233 |
-
# rec is result of loading reconstruction from "read_write_colmap.py"
|
| 234 |
-
# Filter outliers
|
| 235 |
-
xyzs = []
|
| 236 |
-
rgbs = []
|
| 237 |
-
for k, p3D in rec['points'].items():
|
| 238 |
-
xyzs.append(p3D.xyz)
|
| 239 |
-
rgbs.append(p3D.rgb)
|
| 240 |
-
|
| 241 |
-
if points:
|
| 242 |
-
plot_points(fig, np.array(xyzs), color=color if single_color_points else np.array(rgbs), ps=1, name=name)
|
| 243 |
-
if cameras:
|
| 244 |
-
plot_cameras(fig, rec, color=camera_color, legendgroup=name, size=cs)
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def plot_pointcloud(
|
| 248 |
-
fig: go.Figure,
|
| 249 |
-
pts: np.ndarray,
|
| 250 |
-
colors: np.ndarray,
|
| 251 |
-
ps: int = 2,
|
| 252 |
-
name: Optional[str] = None):
|
| 253 |
-
"""Plot a set of 3D points."""
|
| 254 |
-
plot_points(fig, np.array(pts), color=colors, ps=ps, name=name)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
def plot_triangle_mesh(
|
| 258 |
-
fig: go.Figure,
|
| 259 |
-
vert: np.ndarray,
|
| 260 |
-
colors: np.ndarray,
|
| 261 |
-
triangles: np.ndarray,
|
| 262 |
-
name: Optional[str] = None):
|
| 263 |
-
"""Plot a triangle mesh."""
|
| 264 |
-
tr = go.Mesh3d(
|
| 265 |
-
x=vert[:,0],
|
| 266 |
-
y=vert[:,1],
|
| 267 |
-
z=vert[:,2],
|
| 268 |
-
vertexcolor = np.clip(255*colors, 0, 255),
|
| 269 |
-
# i, j and k give the vertices of triangles
|
| 270 |
-
# here we represent the 4 triangles of the tetrahedron surface
|
| 271 |
-
i=triangles[:,0],
|
| 272 |
-
j=triangles[:,1],
|
| 273 |
-
k=triangles[:,2],
|
| 274 |
-
name=name,
|
| 275 |
-
showscale=False
|
| 276 |
-
)
|
| 277 |
-
fig.add_trace(tr)
|
| 278 |
-
|
| 279 |
-
def plot_estimate_and_gt(pred_vertices, pred_connections, gt_vertices=None, gt_connections=None):
|
| 280 |
-
fig3d = init_figure()
|
| 281 |
-
c1 = (30, 20, 255)
|
| 282 |
-
img_color = [c1 for _ in range(len(pred_vertices))]
|
| 283 |
-
plot_points(fig3d, pred_vertices, color = img_color, ps = 10)
|
| 284 |
-
lines = []
|
| 285 |
-
for c in pred_connections:
|
| 286 |
-
v1 = pred_vertices[c[0]]
|
| 287 |
-
v2 = pred_vertices[c[1]]
|
| 288 |
-
lines.append(np.stack([v1, v2], axis=0))
|
| 289 |
-
plot_lines_3d(fig3d, np.array(lines), img_color, ps=4)
|
| 290 |
-
if gt_vertices is not None:
|
| 291 |
-
c2 = (30, 255, 20)
|
| 292 |
-
img_color2 = [c2 for _ in range(len(gt_vertices))]
|
| 293 |
-
plot_points(fig3d, gt_vertices, color = img_color2, ps = 10)
|
| 294 |
-
if gt_connections is not None:
|
| 295 |
-
gt_lines = []
|
| 296 |
-
for c in gt_connections:
|
| 297 |
-
v1 = gt_vertices[c[0]]
|
| 298 |
-
v2 = gt_vertices[c[1]]
|
| 299 |
-
gt_lines.append(np.stack([v1, v2], axis=0))
|
| 300 |
-
plot_lines_3d(fig3d, np.array(gt_lines), img_color2, ps=4)
|
| 301 |
-
fig3d.show()
|
| 302 |
-
return fig3d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|