Upload 6 files
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +41 -0
- parameters.txt +3 -0
- test.tsv +0 -0
- training.log +778 -0
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f453847ebff0edb27cbd8b31c12f12b27d595f4f1bd9f5eb39b98a4ba165e4a
|
3 |
+
size 440532372
|
loss.tsv
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:30:44 0.0000 0.6555 0.5018 0.7500 0.7500 0.7500 0.7500
|
3 |
+
2 23:32:01 0.0000 0.4066 0.3630 0.8684 0.8684 0.8684 0.8684
|
4 |
+
3 23:33:18 0.0000 0.2879 0.3387 0.8947 0.8947 0.8947 0.8947
|
5 |
+
4 23:34:36 0.0000 0.1902 0.5191 0.8684 0.8684 0.8684 0.8684
|
6 |
+
5 23:35:55 0.0000 0.3348 0.6392 0.8816 0.8816 0.8816 0.8816
|
7 |
+
6 23:37:13 0.0000 0.0968 1.1823 0.8421 0.8421 0.8421 0.8421
|
8 |
+
7 23:38:32 0.0000 0.0766 1.0045 0.8684 0.8684 0.8684 0.8684
|
9 |
+
8 23:39:51 0.0000 0.0430 1.2074 0.8816 0.8816 0.8816 0.8816
|
10 |
+
9 23:41:09 0.0000 0.0104 1.5907 0.8553 0.8553 0.8553 0.8553
|
11 |
+
10 23:42:28 0.0000 0.0179 1.3824 0.8553 0.8553 0.8553 0.8553
|
12 |
+
11 23:43:47 0.0000 0.0038 1.2708 0.8947 0.8947 0.8947 0.8947
|
13 |
+
12 23:45:06 0.0000 0.0218 1.5972 0.8947 0.8947 0.8947 0.8947
|
14 |
+
13 23:46:24 0.0000 0.0037 1.4639 0.8816 0.8816 0.8816 0.8816
|
15 |
+
14 23:47:43 0.0000 0.0044 1.5649 0.8553 0.8553 0.8553 0.8553
|
16 |
+
15 23:49:02 0.0000 0.0002 1.6431 0.8947 0.8947 0.8947 0.8947
|
17 |
+
16 23:50:21 0.0000 0.0000 1.6324 0.8684 0.8684 0.8684 0.8684
|
18 |
+
17 23:51:40 0.0000 0.0000 1.6667 0.8947 0.8947 0.8947 0.8947
|
19 |
+
18 23:52:59 0.0000 0.0000 1.6734 0.8947 0.8947 0.8947 0.8947
|
20 |
+
19 23:54:18 0.0000 0.0000 1.6833 0.8947 0.8947 0.8947 0.8947
|
21 |
+
20 23:55:36 0.0000 0.0000 1.6803 0.8947 0.8947 0.8947 0.8947
|
22 |
+
21 23:56:55 0.0000 0.0000 1.6837 0.8947 0.8947 0.8947 0.8947
|
23 |
+
22 23:58:14 0.0000 0.0000 1.6798 0.8947 0.8947 0.8947 0.8947
|
24 |
+
23 23:59:32 0.0000 0.0000 1.6864 0.8947 0.8947 0.8947 0.8947
|
25 |
+
24 00:00:51 0.0000 0.0000 1.6934 0.8947 0.8947 0.8947 0.8947
|
26 |
+
25 00:02:09 0.0000 0.0000 1.6938 0.8947 0.8947 0.8947 0.8947
|
27 |
+
26 00:03:27 0.0000 0.0000 1.6955 0.8947 0.8947 0.8947 0.8947
|
28 |
+
27 00:04:46 0.0000 0.0000 1.6969 0.8947 0.8947 0.8947 0.8947
|
29 |
+
28 00:06:05 0.0000 0.0000 1.6977 0.8947 0.8947 0.8947 0.8947
|
30 |
+
29 00:07:23 0.0000 0.0000 1.7071 0.8947 0.8947 0.8947 0.8947
|
31 |
+
30 00:08:42 0.0000 0.0000 1.7021 0.8947 0.8947 0.8947 0.8947
|
32 |
+
31 00:10:00 0.0000 0.0000 1.6980 0.8947 0.8947 0.8947 0.8947
|
33 |
+
32 00:11:19 0.0000 0.0000 1.6987 0.8947 0.8947 0.8947 0.8947
|
34 |
+
33 00:12:38 0.0000 0.0000 1.6990 0.8947 0.8947 0.8947 0.8947
|
35 |
+
34 00:13:56 0.0000 0.0000 1.6953 0.8947 0.8947 0.8947 0.8947
|
36 |
+
35 00:15:16 0.0000 0.0000 1.7007 0.8947 0.8947 0.8947 0.8947
|
37 |
+
36 00:16:34 0.0000 0.0000 1.7021 0.8947 0.8947 0.8947 0.8947
|
38 |
+
37 00:17:53 0.0000 0.0000 1.7024 0.8947 0.8947 0.8947 0.8947
|
39 |
+
38 00:19:12 0.0000 0.0000 1.7032 0.8947 0.8947 0.8947 0.8947
|
40 |
+
39 00:20:31 0.0000 0.0000 1.7041 0.8947 0.8947 0.8947 0.8947
|
41 |
+
40 00:21:50 0.0000 0.0000 1.7046 0.8947 0.8947 0.8947 0.8947
|
parameters.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
embedding: dbmdz/bert-base-german-cased
|
2 |
+
mini_batch: 16
|
3 |
+
optimizer: <class 'torch.optim.adamw.AdamW'>
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-06-23 23:29:26,936 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-06-23 23:29:26,936 Model: "TextClassifier(
|
3 |
+
(embeddings): TransformerDocumentEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(31103, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(decoder): Linear(in_features=768, out_features=2, bias=True)
|
47 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
48 |
+
(locked_dropout): LockedDropout(p=0.0)
|
49 |
+
(word_dropout): WordDropout(p=0.0)
|
50 |
+
(loss_function): CrossEntropyLoss()
|
51 |
+
(weights): None
|
52 |
+
(weight_tensor) None
|
53 |
+
)"
|
54 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
55 |
+
2024-06-23 23:29:26,937 Corpus: 617 train + 76 dev + 79 test sentences
|
56 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
57 |
+
2024-06-23 23:29:26,937 Train: 617 sentences
|
58 |
+
2024-06-23 23:29:26,937 (train_with_dev=False, train_with_test=False)
|
59 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
60 |
+
2024-06-23 23:29:26,937 Training Params:
|
61 |
+
2024-06-23 23:29:26,937 - learning_rate: "5e-05"
|
62 |
+
2024-06-23 23:29:26,937 - mini_batch_size: "16"
|
63 |
+
2024-06-23 23:29:26,937 - max_epochs: "40"
|
64 |
+
2024-06-23 23:29:26,937 - shuffle: "True"
|
65 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-06-23 23:29:26,937 Plugins:
|
67 |
+
2024-06-23 23:29:26,937 - TensorboardLogger
|
68 |
+
2024-06-23 23:29:26,937 - LinearScheduler | warmup_fraction: '0.1'
|
69 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
70 |
+
2024-06-23 23:29:26,937 Final evaluation on model after last epoch (final-model.pt)
|
71 |
+
2024-06-23 23:29:26,937 - metric: "('micro avg', 'f1-score')"
|
72 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-06-23 23:29:26,937 Computation:
|
74 |
+
2024-06-23 23:29:26,937 - compute on device: cuda:0
|
75 |
+
2024-06-23 23:29:26,937 - embedding storage: none
|
76 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
77 |
+
2024-06-23 23:29:26,937 Model training base path: "/data/ivdb/models/2024-06-23-232925"
|
78 |
+
2024-06-23 23:29:26,937 ----------------------------------------------------------------------------------------------------
|
79 |
+
2024-06-23 23:29:26,938 ----------------------------------------------------------------------------------------------------
|
80 |
+
2024-06-23 23:29:26,938 Logging anything other than scalars to TensorBoard is currently not supported.
|
81 |
+
2024-06-23 23:29:33,821 epoch 1 - iter 3/39 - loss 0.93455690 - time (sec): 6.88 - samples/sec: 6.97 - lr: 0.000001 - momentum: 0.000000
|
82 |
+
2024-06-23 23:29:38,509 epoch 1 - iter 6/39 - loss 0.92026678 - time (sec): 11.57 - samples/sec: 8.30 - lr: 0.000002 - momentum: 0.000000
|
83 |
+
2024-06-23 23:29:44,896 epoch 1 - iter 9/39 - loss 0.87347190 - time (sec): 17.96 - samples/sec: 8.02 - lr: 0.000003 - momentum: 0.000000
|
84 |
+
2024-06-23 23:29:50,040 epoch 1 - iter 12/39 - loss 0.83988379 - time (sec): 23.10 - samples/sec: 8.31 - lr: 0.000003 - momentum: 0.000000
|
85 |
+
2024-06-23 23:29:55,462 epoch 1 - iter 15/39 - loss 0.79978426 - time (sec): 28.52 - samples/sec: 8.41 - lr: 0.000004 - momentum: 0.000000
|
86 |
+
2024-06-23 23:30:00,322 epoch 1 - iter 18/39 - loss 0.76008364 - time (sec): 33.38 - samples/sec: 8.63 - lr: 0.000005 - momentum: 0.000000
|
87 |
+
2024-06-23 23:30:04,805 epoch 1 - iter 21/39 - loss 0.73865537 - time (sec): 37.87 - samples/sec: 8.87 - lr: 0.000006 - momentum: 0.000000
|
88 |
+
2024-06-23 23:30:12,256 epoch 1 - iter 24/39 - loss 0.73148594 - time (sec): 45.32 - samples/sec: 8.47 - lr: 0.000007 - momentum: 0.000000
|
89 |
+
2024-06-23 23:30:17,851 epoch 1 - iter 27/39 - loss 0.71394623 - time (sec): 50.91 - samples/sec: 8.49 - lr: 0.000008 - momentum: 0.000000
|
90 |
+
2024-06-23 23:30:22,326 epoch 1 - iter 30/39 - loss 0.70852675 - time (sec): 55.39 - samples/sec: 8.67 - lr: 0.000009 - momentum: 0.000000
|
91 |
+
2024-06-23 23:30:28,221 epoch 1 - iter 33/39 - loss 0.67715247 - time (sec): 61.28 - samples/sec: 8.62 - lr: 0.000010 - momentum: 0.000000
|
92 |
+
2024-06-23 23:30:34,225 epoch 1 - iter 36/39 - loss 0.65612338 - time (sec): 67.29 - samples/sec: 8.56 - lr: 0.000011 - momentum: 0.000000
|
93 |
+
2024-06-23 23:30:37,993 epoch 1 - iter 39/39 - loss 0.65546145 - time (sec): 71.05 - samples/sec: 8.68 - lr: 0.000012 - momentum: 0.000000
|
94 |
+
2024-06-23 23:30:37,993 ----------------------------------------------------------------------------------------------------
|
95 |
+
2024-06-23 23:30:37,993 EPOCH 1 done: loss 0.6555 - lr: 0.000012
|
96 |
+
2024-06-23 23:30:42,796 DEV : loss 0.5017538666725159 - f1-score (micro avg) 0.75
|
97 |
+
2024-06-23 23:30:44,501 ----------------------------------------------------------------------------------------------------
|
98 |
+
2024-06-23 23:30:49,514 epoch 2 - iter 3/39 - loss 0.62652248 - time (sec): 5.01 - samples/sec: 9.58 - lr: 0.000013 - momentum: 0.000000
|
99 |
+
2024-06-23 23:30:54,304 epoch 2 - iter 6/39 - loss 0.55089944 - time (sec): 9.80 - samples/sec: 9.79 - lr: 0.000014 - momentum: 0.000000
|
100 |
+
2024-06-23 23:30:58,877 epoch 2 - iter 9/39 - loss 0.51546845 - time (sec): 14.37 - samples/sec: 10.02 - lr: 0.000015 - momentum: 0.000000
|
101 |
+
2024-06-23 23:31:05,015 epoch 2 - iter 12/39 - loss 0.48959405 - time (sec): 20.51 - samples/sec: 9.36 - lr: 0.000016 - momentum: 0.000000
|
102 |
+
2024-06-23 23:31:12,604 epoch 2 - iter 15/39 - loss 0.47114836 - time (sec): 28.10 - samples/sec: 8.54 - lr: 0.000017 - momentum: 0.000000
|
103 |
+
2024-06-23 23:31:18,844 epoch 2 - iter 18/39 - loss 0.44175672 - time (sec): 34.34 - samples/sec: 8.39 - lr: 0.000018 - momentum: 0.000000
|
104 |
+
2024-06-23 23:31:23,623 epoch 2 - iter 21/39 - loss 0.44914545 - time (sec): 39.12 - samples/sec: 8.59 - lr: 0.000019 - momentum: 0.000000
|
105 |
+
2024-06-23 23:31:29,386 epoch 2 - iter 24/39 - loss 0.43354483 - time (sec): 44.88 - samples/sec: 8.56 - lr: 0.000020 - momentum: 0.000000
|
106 |
+
2024-06-23 23:31:34,085 epoch 2 - iter 27/39 - loss 0.44229239 - time (sec): 49.58 - samples/sec: 8.71 - lr: 0.000021 - momentum: 0.000000
|
107 |
+
2024-06-23 23:31:39,464 epoch 2 - iter 30/39 - loss 0.42628914 - time (sec): 54.96 - samples/sec: 8.73 - lr: 0.000022 - momentum: 0.000000
|
108 |
+
2024-06-23 23:31:46,064 epoch 2 - iter 33/39 - loss 0.41278999 - time (sec): 61.56 - samples/sec: 8.58 - lr: 0.000022 - momentum: 0.000000
|
109 |
+
2024-06-23 23:31:50,776 epoch 2 - iter 36/39 - loss 0.41018313 - time (sec): 66.27 - samples/sec: 8.69 - lr: 0.000023 - momentum: 0.000000
|
110 |
+
2024-06-23 23:31:54,808 epoch 2 - iter 39/39 - loss 0.40660896 - time (sec): 70.31 - samples/sec: 8.78 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2024-06-23 23:31:54,809 ----------------------------------------------------------------------------------------------------
|
112 |
+
2024-06-23 23:31:54,809 EPOCH 2 done: loss 0.4066 - lr: 0.000024
|
113 |
+
2024-06-23 23:31:59,535 DEV : loss 0.3630148768424988 - f1-score (micro avg) 0.8684
|
114 |
+
2024-06-23 23:32:01,243 ----------------------------------------------------------------------------------------------------
|
115 |
+
2024-06-23 23:32:06,820 epoch 3 - iter 3/39 - loss 0.18468438 - time (sec): 5.58 - samples/sec: 8.61 - lr: 0.000025 - momentum: 0.000000
|
116 |
+
2024-06-23 23:32:12,275 epoch 3 - iter 6/39 - loss 0.27910875 - time (sec): 11.03 - samples/sec: 8.70 - lr: 0.000026 - momentum: 0.000000
|
117 |
+
2024-06-23 23:32:17,083 epoch 3 - iter 9/39 - loss 0.32698032 - time (sec): 15.84 - samples/sec: 9.09 - lr: 0.000027 - momentum: 0.000000
|
118 |
+
2024-06-23 23:32:24,993 epoch 3 - iter 12/39 - loss 0.33958591 - time (sec): 23.75 - samples/sec: 8.08 - lr: 0.000028 - momentum: 0.000000
|
119 |
+
2024-06-23 23:32:30,907 epoch 3 - iter 15/39 - loss 0.32360529 - time (sec): 29.66 - samples/sec: 8.09 - lr: 0.000029 - momentum: 0.000000
|
120 |
+
2024-06-23 23:32:35,708 epoch 3 - iter 18/39 - loss 0.31533587 - time (sec): 34.46 - samples/sec: 8.36 - lr: 0.000030 - momentum: 0.000000
|
121 |
+
2024-06-23 23:32:40,620 epoch 3 - iter 21/39 - loss 0.30045377 - time (sec): 39.38 - samples/sec: 8.53 - lr: 0.000031 - momentum: 0.000000
|
122 |
+
2024-06-23 23:32:45,487 epoch 3 - iter 24/39 - loss 0.28366955 - time (sec): 44.24 - samples/sec: 8.68 - lr: 0.000032 - momentum: 0.000000
|
123 |
+
2024-06-23 23:32:54,051 epoch 3 - iter 27/39 - loss 0.28988732 - time (sec): 52.81 - samples/sec: 8.18 - lr: 0.000033 - momentum: 0.000000
|
124 |
+
2024-06-23 23:32:58,828 epoch 3 - iter 30/39 - loss 0.27671992 - time (sec): 57.58 - samples/sec: 8.34 - lr: 0.000034 - momentum: 0.000000
|
125 |
+
2024-06-23 23:33:03,728 epoch 3 - iter 33/39 - loss 0.28976736 - time (sec): 62.48 - samples/sec: 8.45 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2024-06-23 23:33:08,339 epoch 3 - iter 36/39 - loss 0.27887381 - time (sec): 67.09 - samples/sec: 8.58 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2024-06-23 23:33:12,332 epoch 3 - iter 39/39 - loss 0.28789787 - time (sec): 71.09 - samples/sec: 8.68 - lr: 0.000037 - momentum: 0.000000
|
128 |
+
2024-06-23 23:33:12,332 ----------------------------------------------------------------------------------------------------
|
129 |
+
2024-06-23 23:33:12,332 EPOCH 3 done: loss 0.2879 - lr: 0.000037
|
130 |
+
2024-06-23 23:33:17,172 DEV : loss 0.33866241574287415 - f1-score (micro avg) 0.8947
|
131 |
+
2024-06-23 23:33:18,778 ----------------------------------------------------------------------------------------------------
|
132 |
+
2024-06-23 23:33:27,476 epoch 4 - iter 3/39 - loss 0.06723633 - time (sec): 8.70 - samples/sec: 5.52 - lr: 0.000038 - momentum: 0.000000
|
133 |
+
2024-06-23 23:33:32,117 epoch 4 - iter 6/39 - loss 0.14415476 - time (sec): 13.34 - samples/sec: 7.20 - lr: 0.000039 - momentum: 0.000000
|
134 |
+
2024-06-23 23:33:37,619 epoch 4 - iter 9/39 - loss 0.13159802 - time (sec): 18.84 - samples/sec: 7.64 - lr: 0.000040 - momentum: 0.000000
|
135 |
+
2024-06-23 23:33:42,442 epoch 4 - iter 12/39 - loss 0.12807673 - time (sec): 23.66 - samples/sec: 8.11 - lr: 0.000041 - momentum: 0.000000
|
136 |
+
2024-06-23 23:33:47,589 epoch 4 - iter 15/39 - loss 0.11112227 - time (sec): 28.81 - samples/sec: 8.33 - lr: 0.000041 - momentum: 0.000000
|
137 |
+
2024-06-23 23:33:52,400 epoch 4 - iter 18/39 - loss 0.10901718 - time (sec): 33.62 - samples/sec: 8.57 - lr: 0.000042 - momentum: 0.000000
|
138 |
+
2024-06-23 23:33:57,236 epoch 4 - iter 21/39 - loss 0.09612736 - time (sec): 38.46 - samples/sec: 8.74 - lr: 0.000043 - momentum: 0.000000
|
139 |
+
2024-06-23 23:34:02,045 epoch 4 - iter 24/39 - loss 0.10819060 - time (sec): 43.27 - samples/sec: 8.88 - lr: 0.000044 - momentum: 0.000000
|
140 |
+
2024-06-23 23:34:07,428 epoch 4 - iter 27/39 - loss 0.13555085 - time (sec): 48.65 - samples/sec: 8.88 - lr: 0.000045 - momentum: 0.000000
|
141 |
+
2024-06-23 23:34:12,240 epoch 4 - iter 30/39 - loss 0.15823287 - time (sec): 53.46 - samples/sec: 8.98 - lr: 0.000046 - momentum: 0.000000
|
142 |
+
2024-06-23 23:34:17,046 epoch 4 - iter 33/39 - loss 0.19133172 - time (sec): 58.27 - samples/sec: 9.06 - lr: 0.000047 - momentum: 0.000000
|
143 |
+
2024-06-23 23:34:24,735 epoch 4 - iter 36/39 - loss 0.18381271 - time (sec): 65.96 - samples/sec: 8.73 - lr: 0.000048 - momentum: 0.000000
|
144 |
+
2024-06-23 23:34:30,353 epoch 4 - iter 39/39 - loss 0.19017995 - time (sec): 71.57 - samples/sec: 8.62 - lr: 0.000049 - momentum: 0.000000
|
145 |
+
2024-06-23 23:34:30,354 ----------------------------------------------------------------------------------------------------
|
146 |
+
2024-06-23 23:34:30,354 EPOCH 4 done: loss 0.1902 - lr: 0.000049
|
147 |
+
2024-06-23 23:34:35,244 DEV : loss 0.5190975069999695 - f1-score (micro avg) 0.8684
|
148 |
+
2024-06-23 23:34:36,843 ----------------------------------------------------------------------------------------------------
|
149 |
+
2024-06-23 23:34:41,736 epoch 5 - iter 3/39 - loss 0.12455761 - time (sec): 4.89 - samples/sec: 9.81 - lr: 0.000050 - momentum: 0.000000
|
150 |
+
2024-06-23 23:34:46,475 epoch 5 - iter 6/39 - loss 0.13643145 - time (sec): 9.63 - samples/sec: 9.97 - lr: 0.000050 - momentum: 0.000000
|
151 |
+
2024-06-23 23:34:52,693 epoch 5 - iter 9/39 - loss 0.16813415 - time (sec): 15.85 - samples/sec: 9.09 - lr: 0.000050 - momentum: 0.000000
|
152 |
+
2024-06-23 23:34:57,798 epoch 5 - iter 12/39 - loss 0.22500083 - time (sec): 20.95 - samples/sec: 9.16 - lr: 0.000050 - momentum: 0.000000
|
153 |
+
2024-06-23 23:35:05,245 epoch 5 - iter 15/39 - loss 0.18959679 - time (sec): 28.40 - samples/sec: 8.45 - lr: 0.000050 - momentum: 0.000000
|
154 |
+
2024-06-23 23:35:11,295 epoch 5 - iter 18/39 - loss 0.22634660 - time (sec): 34.45 - samples/sec: 8.36 - lr: 0.000049 - momentum: 0.000000
|
155 |
+
2024-06-23 23:35:17,338 epoch 5 - iter 21/39 - loss 0.21195548 - time (sec): 40.49 - samples/sec: 8.30 - lr: 0.000049 - momentum: 0.000000
|
156 |
+
2024-06-23 23:35:22,368 epoch 5 - iter 24/39 - loss 0.24165446 - time (sec): 45.52 - samples/sec: 8.44 - lr: 0.000049 - momentum: 0.000000
|
157 |
+
2024-06-23 23:35:28,986 epoch 5 - iter 27/39 - loss 0.34555561 - time (sec): 52.14 - samples/sec: 8.29 - lr: 0.000049 - momentum: 0.000000
|
158 |
+
2024-06-23 23:35:34,569 epoch 5 - iter 30/39 - loss 0.32555066 - time (sec): 57.72 - samples/sec: 8.32 - lr: 0.000049 - momentum: 0.000000
|
159 |
+
2024-06-23 23:35:39,185 epoch 5 - iter 33/39 - loss 0.35673888 - time (sec): 62.34 - samples/sec: 8.47 - lr: 0.000049 - momentum: 0.000000
|
160 |
+
2024-06-23 23:35:44,542 epoch 5 - iter 36/39 - loss 0.34086972 - time (sec): 67.70 - samples/sec: 8.51 - lr: 0.000049 - momentum: 0.000000
|
161 |
+
2024-06-23 23:35:48,680 epoch 5 - iter 39/39 - loss 0.33476651 - time (sec): 71.84 - samples/sec: 8.59 - lr: 0.000049 - momentum: 0.000000
|
162 |
+
2024-06-23 23:35:48,681 ----------------------------------------------------------------------------------------------------
|
163 |
+
2024-06-23 23:35:48,681 EPOCH 5 done: loss 0.3348 - lr: 0.000049
|
164 |
+
2024-06-23 23:35:53,453 DEV : loss 0.6392198204994202 - f1-score (micro avg) 0.8816
|
165 |
+
2024-06-23 23:35:55,052 ----------------------------------------------------------------------------------------------------
|
166 |
+
2024-06-23 23:36:00,306 epoch 6 - iter 3/39 - loss 0.10281337 - time (sec): 5.25 - samples/sec: 9.14 - lr: 0.000049 - momentum: 0.000000
|
167 |
+
2024-06-23 23:36:05,140 epoch 6 - iter 6/39 - loss 0.11683190 - time (sec): 10.09 - samples/sec: 9.52 - lr: 0.000049 - momentum: 0.000000
|
168 |
+
2024-06-23 23:36:11,661 epoch 6 - iter 9/39 - loss 0.12543468 - time (sec): 16.61 - samples/sec: 8.67 - lr: 0.000048 - momentum: 0.000000
|
169 |
+
2024-06-23 23:36:16,538 epoch 6 - iter 12/39 - loss 0.24078707 - time (sec): 21.48 - samples/sec: 8.94 - lr: 0.000048 - momentum: 0.000000
|
170 |
+
2024-06-23 23:36:21,279 epoch 6 - iter 15/39 - loss 0.19658959 - time (sec): 26.23 - samples/sec: 9.15 - lr: 0.000048 - momentum: 0.000000
|
171 |
+
2024-06-23 23:36:28,391 epoch 6 - iter 18/39 - loss 0.16910445 - time (sec): 33.34 - samples/sec: 8.64 - lr: 0.000048 - momentum: 0.000000
|
172 |
+
2024-06-23 23:36:33,712 epoch 6 - iter 21/39 - loss 0.14931677 - time (sec): 38.66 - samples/sec: 8.69 - lr: 0.000048 - momentum: 0.000000
|
173 |
+
2024-06-23 23:36:38,940 epoch 6 - iter 24/39 - loss 0.13100674 - time (sec): 43.89 - samples/sec: 8.75 - lr: 0.000048 - momentum: 0.000000
|
174 |
+
2024-06-23 23:36:45,565 epoch 6 - iter 27/39 - loss 0.13358956 - time (sec): 50.51 - samples/sec: 8.55 - lr: 0.000048 - momentum: 0.000000
|
175 |
+
2024-06-23 23:36:52,734 epoch 6 - iter 30/39 - loss 0.12239488 - time (sec): 57.68 - samples/sec: 8.32 - lr: 0.000048 - momentum: 0.000000
|
176 |
+
2024-06-23 23:36:57,571 epoch 6 - iter 33/39 - loss 0.11163022 - time (sec): 62.52 - samples/sec: 8.45 - lr: 0.000048 - momentum: 0.000000
|
177 |
+
2024-06-23 23:37:03,075 epoch 6 - iter 36/39 - loss 0.10362160 - time (sec): 68.02 - samples/sec: 8.47 - lr: 0.000047 - momentum: 0.000000
|
178 |
+
2024-06-23 23:37:07,212 epoch 6 - iter 39/39 - loss 0.09678627 - time (sec): 72.16 - samples/sec: 8.55 - lr: 0.000047 - momentum: 0.000000
|
179 |
+
2024-06-23 23:37:07,213 ----------------------------------------------------------------------------------------------------
|
180 |
+
2024-06-23 23:37:07,213 EPOCH 6 done: loss 0.0968 - lr: 0.000047
|
181 |
+
2024-06-23 23:37:12,022 DEV : loss 1.1822508573532104 - f1-score (micro avg) 0.8421
|
182 |
+
2024-06-23 23:37:13,734 ----------------------------------------------------------------------------------------------------
|
183 |
+
2024-06-23 23:37:19,211 epoch 7 - iter 3/39 - loss 0.00367758 - time (sec): 5.48 - samples/sec: 8.77 - lr: 0.000047 - momentum: 0.000000
|
184 |
+
2024-06-23 23:37:23,835 epoch 7 - iter 6/39 - loss 0.07268900 - time (sec): 10.10 - samples/sec: 9.51 - lr: 0.000047 - momentum: 0.000000
|
185 |
+
2024-06-23 23:37:30,291 epoch 7 - iter 9/39 - loss 0.10109780 - time (sec): 16.56 - samples/sec: 8.70 - lr: 0.000047 - momentum: 0.000000
|
186 |
+
2024-06-23 23:37:36,792 epoch 7 - iter 12/39 - loss 0.07664083 - time (sec): 23.06 - samples/sec: 8.33 - lr: 0.000047 - momentum: 0.000000
|
187 |
+
2024-06-23 23:37:42,111 epoch 7 - iter 15/39 - loss 0.07984787 - time (sec): 28.38 - samples/sec: 8.46 - lr: 0.000047 - momentum: 0.000000
|
188 |
+
2024-06-23 23:37:48,029 epoch 7 - iter 18/39 - loss 0.06770204 - time (sec): 34.29 - samples/sec: 8.40 - lr: 0.000047 - momentum: 0.000000
|
189 |
+
2024-06-23 23:37:53,055 epoch 7 - iter 21/39 - loss 0.06779089 - time (sec): 39.32 - samples/sec: 8.55 - lr: 0.000047 - momentum: 0.000000
|
190 |
+
2024-06-23 23:37:59,410 epoch 7 - iter 24/39 - loss 0.06405825 - time (sec): 45.67 - samples/sec: 8.41 - lr: 0.000047 - momentum: 0.000000
|
191 |
+
2024-06-23 23:38:06,673 epoch 7 - iter 27/39 - loss 0.05694537 - time (sec): 52.94 - samples/sec: 8.16 - lr: 0.000046 - momentum: 0.000000
|
192 |
+
2024-06-23 23:38:11,348 epoch 7 - iter 30/39 - loss 0.05323722 - time (sec): 57.61 - samples/sec: 8.33 - lr: 0.000046 - momentum: 0.000000
|
193 |
+
2024-06-23 23:38:17,251 epoch 7 - iter 33/39 - loss 0.06067778 - time (sec): 63.52 - samples/sec: 8.31 - lr: 0.000046 - momentum: 0.000000
|
194 |
+
2024-06-23 23:38:21,919 epoch 7 - iter 36/39 - loss 0.07111521 - time (sec): 68.18 - samples/sec: 8.45 - lr: 0.000046 - momentum: 0.000000
|
195 |
+
2024-06-23 23:38:25,974 epoch 7 - iter 39/39 - loss 0.07664184 - time (sec): 72.24 - samples/sec: 8.54 - lr: 0.000046 - momentum: 0.000000
|
196 |
+
2024-06-23 23:38:25,974 ----------------------------------------------------------------------------------------------------
|
197 |
+
2024-06-23 23:38:25,974 EPOCH 7 done: loss 0.0766 - lr: 0.000046
|
198 |
+
2024-06-23 23:38:30,760 DEV : loss 1.004543662071228 - f1-score (micro avg) 0.8684
|
199 |
+
2024-06-23 23:38:32,359 ----------------------------------------------------------------------------------------------------
|
200 |
+
2024-06-23 23:38:38,357 epoch 8 - iter 3/39 - loss 0.00009458 - time (sec): 6.00 - samples/sec: 8.00 - lr: 0.000046 - momentum: 0.000000
|
201 |
+
2024-06-23 23:38:44,572 epoch 8 - iter 6/39 - loss 0.01349367 - time (sec): 12.21 - samples/sec: 7.86 - lr: 0.000046 - momentum: 0.000000
|
202 |
+
2024-06-23 23:38:49,788 epoch 8 - iter 9/39 - loss 0.06544811 - time (sec): 17.43 - samples/sec: 8.26 - lr: 0.000046 - momentum: 0.000000
|
203 |
+
2024-06-23 23:38:55,355 epoch 8 - iter 12/39 - loss 0.05148862 - time (sec): 23.00 - samples/sec: 8.35 - lr: 0.000046 - momentum: 0.000000
|
204 |
+
2024-06-23 23:39:00,535 epoch 8 - iter 15/39 - loss 0.04555394 - time (sec): 28.17 - samples/sec: 8.52 - lr: 0.000045 - momentum: 0.000000
|
205 |
+
2024-06-23 23:39:05,299 epoch 8 - iter 18/39 - loss 0.03797210 - time (sec): 32.94 - samples/sec: 8.74 - lr: 0.000045 - momentum: 0.000000
|
206 |
+
2024-06-23 23:39:10,372 epoch 8 - iter 21/39 - loss 0.03290582 - time (sec): 38.01 - samples/sec: 8.84 - lr: 0.000045 - momentum: 0.000000
|
207 |
+
2024-06-23 23:39:15,209 epoch 8 - iter 24/39 - loss 0.02905090 - time (sec): 42.85 - samples/sec: 8.96 - lr: 0.000045 - momentum: 0.000000
|
208 |
+
2024-06-23 23:39:20,127 epoch 8 - iter 27/39 - loss 0.03753662 - time (sec): 47.77 - samples/sec: 9.04 - lr: 0.000045 - momentum: 0.000000
|
209 |
+
2024-06-23 23:39:25,378 epoch 8 - iter 30/39 - loss 0.04452772 - time (sec): 53.02 - samples/sec: 9.05 - lr: 0.000045 - momentum: 0.000000
|
210 |
+
2024-06-23 23:39:31,903 epoch 8 - iter 33/39 - loss 0.04094768 - time (sec): 59.54 - samples/sec: 8.87 - lr: 0.000045 - momentum: 0.000000
|
211 |
+
2024-06-23 23:39:38,172 epoch 8 - iter 36/39 - loss 0.04595046 - time (sec): 65.81 - samples/sec: 8.75 - lr: 0.000045 - momentum: 0.000000
|
212 |
+
2024-06-23 23:39:44,802 epoch 8 - iter 39/39 - loss 0.04297773 - time (sec): 72.44 - samples/sec: 8.52 - lr: 0.000045 - momentum: 0.000000
|
213 |
+
2024-06-23 23:39:44,803 ----------------------------------------------------------------------------------------------------
|
214 |
+
2024-06-23 23:39:44,803 EPOCH 8 done: loss 0.0430 - lr: 0.000045
|
215 |
+
2024-06-23 23:39:49,555 DEV : loss 1.2074036598205566 - f1-score (micro avg) 0.8816
|
216 |
+
2024-06-23 23:39:51,296 ----------------------------------------------------------------------------------------------------
|
217 |
+
2024-06-23 23:39:56,308 epoch 9 - iter 3/39 - loss 0.00068067 - time (sec): 5.01 - samples/sec: 9.58 - lr: 0.000045 - momentum: 0.000000
|
218 |
+
2024-06-23 23:40:01,206 epoch 9 - iter 6/39 - loss 0.05288977 - time (sec): 9.91 - samples/sec: 9.69 - lr: 0.000044 - momentum: 0.000000
|
219 |
+
2024-06-23 23:40:06,035 epoch 9 - iter 9/39 - loss 0.03526389 - time (sec): 14.74 - samples/sec: 9.77 - lr: 0.000044 - momentum: 0.000000
|
220 |
+
2024-06-23 23:40:10,927 epoch 9 - iter 12/39 - loss 0.02645130 - time (sec): 19.63 - samples/sec: 9.78 - lr: 0.000044 - momentum: 0.000000
|
221 |
+
2024-06-23 23:40:15,739 epoch 9 - iter 15/39 - loss 0.02270784 - time (sec): 24.44 - samples/sec: 9.82 - lr: 0.000044 - momentum: 0.000000
|
222 |
+
2024-06-23 23:40:20,570 epoch 9 - iter 18/39 - loss 0.01892902 - time (sec): 29.27 - samples/sec: 9.84 - lr: 0.000044 - momentum: 0.000000
|
223 |
+
2024-06-23 23:40:26,470 epoch 9 - iter 21/39 - loss 0.01907380 - time (sec): 35.17 - samples/sec: 9.55 - lr: 0.000044 - momentum: 0.000000
|
224 |
+
2024-06-23 23:40:31,128 epoch 9 - iter 24/39 - loss 0.01669493 - time (sec): 39.83 - samples/sec: 9.64 - lr: 0.000044 - momentum: 0.000000
|
225 |
+
2024-06-23 23:40:37,779 epoch 9 - iter 27/39 - loss 0.01488654 - time (sec): 46.48 - samples/sec: 9.29 - lr: 0.000044 - momentum: 0.000000
|
226 |
+
2024-06-23 23:40:42,883 epoch 9 - iter 30/39 - loss 0.01339824 - time (sec): 51.59 - samples/sec: 9.30 - lr: 0.000044 - momentum: 0.000000
|
227 |
+
2024-06-23 23:40:50,497 epoch 9 - iter 33/39 - loss 0.01220745 - time (sec): 59.20 - samples/sec: 8.92 - lr: 0.000043 - momentum: 0.000000
|
228 |
+
2024-06-23 23:40:58,027 epoch 9 - iter 36/39 - loss 0.01119089 - time (sec): 66.73 - samples/sec: 8.63 - lr: 0.000043 - momentum: 0.000000
|
229 |
+
2024-06-23 23:41:03,434 epoch 9 - iter 39/39 - loss 0.01044824 - time (sec): 72.14 - samples/sec: 8.55 - lr: 0.000043 - momentum: 0.000000
|
230 |
+
2024-06-23 23:41:03,434 ----------------------------------------------------------------------------------------------------
|
231 |
+
2024-06-23 23:41:03,434 EPOCH 9 done: loss 0.0104 - lr: 0.000043
|
232 |
+
2024-06-23 23:41:08,234 DEV : loss 1.5907199382781982 - f1-score (micro avg) 0.8553
|
233 |
+
2024-06-23 23:41:09,983 ----------------------------------------------------------------------------------------------------
|
234 |
+
2024-06-23 23:41:15,388 epoch 10 - iter 3/39 - loss 0.00290251 - time (sec): 5.40 - samples/sec: 8.88 - lr: 0.000043 - momentum: 0.000000
|
235 |
+
2024-06-23 23:41:21,479 epoch 10 - iter 6/39 - loss 0.00146658 - time (sec): 11.49 - samples/sec: 8.35 - lr: 0.000043 - momentum: 0.000000
|
236 |
+
2024-06-23 23:41:27,839 epoch 10 - iter 9/39 - loss 0.00097796 - time (sec): 17.85 - samples/sec: 8.06 - lr: 0.000043 - momentum: 0.000000
|
237 |
+
2024-06-23 23:41:32,785 epoch 10 - iter 12/39 - loss 0.00073999 - time (sec): 22.80 - samples/sec: 8.42 - lr: 0.000043 - momentum: 0.000000
|
238 |
+
2024-06-23 23:41:37,473 epoch 10 - iter 15/39 - loss 0.03087843 - time (sec): 27.49 - samples/sec: 8.73 - lr: 0.000043 - momentum: 0.000000
|
239 |
+
2024-06-23 23:41:44,778 epoch 10 - iter 18/39 - loss 0.02574302 - time (sec): 34.79 - samples/sec: 8.28 - lr: 0.000043 - momentum: 0.000000
|
240 |
+
2024-06-23 23:41:49,889 epoch 10 - iter 21/39 - loss 0.03273100 - time (sec): 39.90 - samples/sec: 8.42 - lr: 0.000043 - momentum: 0.000000
|
241 |
+
2024-06-23 23:41:54,878 epoch 10 - iter 24/39 - loss 0.02863986 - time (sec): 44.89 - samples/sec: 8.55 - lr: 0.000042 - momentum: 0.000000
|
242 |
+
2024-06-23 23:41:59,604 epoch 10 - iter 27/39 - loss 0.02545767 - time (sec): 49.62 - samples/sec: 8.71 - lr: 0.000042 - momentum: 0.000000
|
243 |
+
2024-06-23 23:42:06,010 epoch 10 - iter 30/39 - loss 0.02291905 - time (sec): 56.03 - samples/sec: 8.57 - lr: 0.000042 - momentum: 0.000000
|
244 |
+
2024-06-23 23:42:12,656 epoch 10 - iter 33/39 - loss 0.02085801 - time (sec): 62.67 - samples/sec: 8.42 - lr: 0.000042 - momentum: 0.000000
|
245 |
+
2024-06-23 23:42:17,732 epoch 10 - iter 36/39 - loss 0.01912121 - time (sec): 67.75 - samples/sec: 8.50 - lr: 0.000042 - momentum: 0.000000
|
246 |
+
2024-06-23 23:42:22,158 epoch 10 - iter 39/39 - loss 0.01785281 - time (sec): 72.17 - samples/sec: 8.55 - lr: 0.000042 - momentum: 0.000000
|
247 |
+
2024-06-23 23:42:22,158 ----------------------------------------------------------------------------------------------------
|
248 |
+
2024-06-23 23:42:22,158 EPOCH 10 done: loss 0.0179 - lr: 0.000042
|
249 |
+
2024-06-23 23:42:26,950 DEV : loss 1.3823747634887695 - f1-score (micro avg) 0.8553
|
250 |
+
2024-06-23 23:42:28,656 ----------------------------------------------------------------------------------------------------
|
251 |
+
2024-06-23 23:42:33,578 epoch 11 - iter 3/39 - loss 0.00037880 - time (sec): 4.92 - samples/sec: 9.75 - lr: 0.000042 - momentum: 0.000000
|
252 |
+
2024-06-23 23:42:40,756 epoch 11 - iter 6/39 - loss 0.00019021 - time (sec): 12.10 - samples/sec: 7.93 - lr: 0.000042 - momentum: 0.000000
|
253 |
+
2024-06-23 23:42:45,931 epoch 11 - iter 9/39 - loss 0.00014317 - time (sec): 17.27 - samples/sec: 8.34 - lr: 0.000042 - momentum: 0.000000
|
254 |
+
2024-06-23 23:42:50,849 epoch 11 - iter 12/39 - loss 0.00010746 - time (sec): 22.19 - samples/sec: 8.65 - lr: 0.000041 - momentum: 0.000000
|
255 |
+
2024-06-23 23:42:56,673 epoch 11 - iter 15/39 - loss 0.00018469 - time (sec): 28.02 - samples/sec: 8.57 - lr: 0.000041 - momentum: 0.000000
|
256 |
+
2024-06-23 23:43:01,802 epoch 11 - iter 18/39 - loss 0.00015400 - time (sec): 33.14 - samples/sec: 8.69 - lr: 0.000041 - momentum: 0.000000
|
257 |
+
2024-06-23 23:43:06,664 epoch 11 - iter 21/39 - loss 0.00013212 - time (sec): 38.01 - samples/sec: 8.84 - lr: 0.000041 - momentum: 0.000000
|
258 |
+
2024-06-23 23:43:13,922 epoch 11 - iter 24/39 - loss 0.00012075 - time (sec): 45.27 - samples/sec: 8.48 - lr: 0.000041 - momentum: 0.000000
|
259 |
+
2024-06-23 23:43:19,164 epoch 11 - iter 27/39 - loss 0.00010768 - time (sec): 50.51 - samples/sec: 8.55 - lr: 0.000041 - momentum: 0.000000
|
260 |
+
2024-06-23 23:43:24,119 epoch 11 - iter 30/39 - loss 0.00009707 - time (sec): 55.46 - samples/sec: 8.65 - lr: 0.000041 - momentum: 0.000000
|
261 |
+
2024-06-23 23:43:31,924 epoch 11 - iter 33/39 - loss 0.00008831 - time (sec): 63.27 - samples/sec: 8.35 - lr: 0.000041 - momentum: 0.000000
|
262 |
+
2024-06-23 23:43:36,757 epoch 11 - iter 36/39 - loss 0.00406036 - time (sec): 68.10 - samples/sec: 8.46 - lr: 0.000041 - momentum: 0.000000
|
263 |
+
2024-06-23 23:43:41,065 epoch 11 - iter 39/39 - loss 0.00379065 - time (sec): 72.41 - samples/sec: 8.52 - lr: 0.000041 - momentum: 0.000000
|
264 |
+
2024-06-23 23:43:41,066 ----------------------------------------------------------------------------------------------------
|
265 |
+
2024-06-23 23:43:41,066 EPOCH 11 done: loss 0.0038 - lr: 0.000041
|
266 |
+
2024-06-23 23:43:45,841 DEV : loss 1.270772933959961 - f1-score (micro avg) 0.8947
|
267 |
+
2024-06-23 23:43:47,563 ----------------------------------------------------------------------------------------------------
|
268 |
+
2024-06-23 23:43:53,869 epoch 12 - iter 3/39 - loss 0.00000028 - time (sec): 6.30 - samples/sec: 7.61 - lr: 0.000040 - momentum: 0.000000
|
269 |
+
2024-06-23 23:43:59,747 epoch 12 - iter 6/39 - loss 0.00000041 - time (sec): 12.18 - samples/sec: 7.88 - lr: 0.000040 - momentum: 0.000000
|
270 |
+
2024-06-23 23:44:04,427 epoch 12 - iter 9/39 - loss 0.00830625 - time (sec): 16.86 - samples/sec: 8.54 - lr: 0.000040 - momentum: 0.000000
|
271 |
+
2024-06-23 23:44:09,084 epoch 12 - iter 12/39 - loss 0.01907569 - time (sec): 21.52 - samples/sec: 8.92 - lr: 0.000040 - momentum: 0.000000
|
272 |
+
2024-06-23 23:44:15,876 epoch 12 - iter 15/39 - loss 0.01526067 - time (sec): 28.31 - samples/sec: 8.48 - lr: 0.000040 - momentum: 0.000000
|
273 |
+
2024-06-23 23:44:20,778 epoch 12 - iter 18/39 - loss 0.01340097 - time (sec): 33.21 - samples/sec: 8.67 - lr: 0.000040 - momentum: 0.000000
|
274 |
+
2024-06-23 23:44:26,562 epoch 12 - iter 21/39 - loss 0.01148827 - time (sec): 39.00 - samples/sec: 8.62 - lr: 0.000040 - momentum: 0.000000
|
275 |
+
2024-06-23 23:44:32,697 epoch 12 - iter 24/39 - loss 0.01005287 - time (sec): 45.13 - samples/sec: 8.51 - lr: 0.000040 - momentum: 0.000000
|
276 |
+
2024-06-23 23:44:39,395 epoch 12 - iter 27/39 - loss 0.01038687 - time (sec): 51.83 - samples/sec: 8.33 - lr: 0.000040 - momentum: 0.000000
|
277 |
+
2024-06-23 23:44:44,879 epoch 12 - iter 30/39 - loss 0.00934962 - time (sec): 57.31 - samples/sec: 8.37 - lr: 0.000039 - momentum: 0.000000
|
278 |
+
2024-06-23 23:44:50,290 epoch 12 - iter 33/39 - loss 0.02547252 - time (sec): 62.73 - samples/sec: 8.42 - lr: 0.000039 - momentum: 0.000000
|
279 |
+
2024-06-23 23:44:55,693 epoch 12 - iter 36/39 - loss 0.02335309 - time (sec): 68.13 - samples/sec: 8.45 - lr: 0.000039 - momentum: 0.000000
|
280 |
+
2024-06-23 23:44:59,717 epoch 12 - iter 39/39 - loss 0.02180154 - time (sec): 72.15 - samples/sec: 8.55 - lr: 0.000039 - momentum: 0.000000
|
281 |
+
2024-06-23 23:44:59,717 ----------------------------------------------------------------------------------------------------
|
282 |
+
2024-06-23 23:44:59,717 EPOCH 12 done: loss 0.0218 - lr: 0.000039
|
283 |
+
2024-06-23 23:45:04,519 DEV : loss 1.5972371101379395 - f1-score (micro avg) 0.8947
|
284 |
+
2024-06-23 23:45:06,235 ----------------------------------------------------------------------------------------------------
|
285 |
+
2024-06-23 23:45:11,210 epoch 13 - iter 3/39 - loss 0.00042464 - time (sec): 4.97 - samples/sec: 9.65 - lr: 0.000039 - momentum: 0.000000
|
286 |
+
2024-06-23 23:45:17,832 epoch 13 - iter 6/39 - loss 0.00021239 - time (sec): 11.60 - samples/sec: 8.28 - lr: 0.000039 - momentum: 0.000000
|
287 |
+
2024-06-23 23:45:22,558 epoch 13 - iter 9/39 - loss 0.00014175 - time (sec): 16.32 - samples/sec: 8.82 - lr: 0.000039 - momentum: 0.000000
|
288 |
+
2024-06-23 23:45:28,624 epoch 13 - iter 12/39 - loss 0.00010819 - time (sec): 22.39 - samples/sec: 8.58 - lr: 0.000039 - momentum: 0.000000
|
289 |
+
2024-06-23 23:45:33,423 epoch 13 - iter 15/39 - loss 0.00015041 - time (sec): 27.19 - samples/sec: 8.83 - lr: 0.000039 - momentum: 0.000000
|
290 |
+
2024-06-23 23:45:39,621 epoch 13 - iter 18/39 - loss 0.00012895 - time (sec): 33.39 - samples/sec: 8.63 - lr: 0.000039 - momentum: 0.000000
|
291 |
+
2024-06-23 23:45:44,578 epoch 13 - iter 21/39 - loss 0.00011055 - time (sec): 38.34 - samples/sec: 8.76 - lr: 0.000038 - momentum: 0.000000
|
292 |
+
2024-06-23 23:45:52,329 epoch 13 - iter 24/39 - loss 0.00009680 - time (sec): 46.09 - samples/sec: 8.33 - lr: 0.000038 - momentum: 0.000000
|
293 |
+
2024-06-23 23:45:57,404 epoch 13 - iter 27/39 - loss 0.00013552 - time (sec): 51.17 - samples/sec: 8.44 - lr: 0.000038 - momentum: 0.000000
|
294 |
+
2024-06-23 23:46:02,364 epoch 13 - iter 30/39 - loss 0.00012256 - time (sec): 56.13 - samples/sec: 8.55 - lr: 0.000038 - momentum: 0.000000
|
295 |
+
2024-06-23 23:46:07,919 epoch 13 - iter 33/39 - loss 0.00423856 - time (sec): 61.68 - samples/sec: 8.56 - lr: 0.000038 - momentum: 0.000000
|
296 |
+
2024-06-23 23:46:14,279 epoch 13 - iter 36/39 - loss 0.00388536 - time (sec): 68.04 - samples/sec: 8.47 - lr: 0.000038 - momentum: 0.000000
|
297 |
+
2024-06-23 23:46:18,481 epoch 13 - iter 39/39 - loss 0.00365058 - time (sec): 72.24 - samples/sec: 8.54 - lr: 0.000038 - momentum: 0.000000
|
298 |
+
2024-06-23 23:46:18,481 ----------------------------------------------------------------------------------------------------
|
299 |
+
2024-06-23 23:46:18,481 EPOCH 13 done: loss 0.0037 - lr: 0.000038
|
300 |
+
2024-06-23 23:46:23,265 DEV : loss 1.463855504989624 - f1-score (micro avg) 0.8816
|
301 |
+
2024-06-23 23:46:24,860 ----------------------------------------------------------------------------------------------------
|
302 |
+
2024-06-23 23:46:30,906 epoch 14 - iter 3/39 - loss 0.00000010 - time (sec): 6.05 - samples/sec: 7.94 - lr: 0.000038 - momentum: 0.000000
|
303 |
+
2024-06-23 23:46:36,765 epoch 14 - iter 6/39 - loss 0.00000019 - time (sec): 11.90 - samples/sec: 8.06 - lr: 0.000038 - momentum: 0.000000
|
304 |
+
2024-06-23 23:46:43,146 epoch 14 - iter 9/39 - loss 0.00000030 - time (sec): 18.28 - samples/sec: 7.88 - lr: 0.000037 - momentum: 0.000000
|
305 |
+
2024-06-23 23:46:47,958 epoch 14 - iter 12/39 - loss 0.00000027 - time (sec): 23.10 - samples/sec: 8.31 - lr: 0.000037 - momentum: 0.000000
|
306 |
+
2024-06-23 23:46:53,021 epoch 14 - iter 15/39 - loss 0.00000044 - time (sec): 28.16 - samples/sec: 8.52 - lr: 0.000037 - momentum: 0.000000
|
307 |
+
2024-06-23 23:46:59,960 epoch 14 - iter 18/39 - loss 0.00000042 - time (sec): 35.10 - samples/sec: 8.21 - lr: 0.000037 - momentum: 0.000000
|
308 |
+
2024-06-23 23:47:05,220 epoch 14 - iter 21/39 - loss 0.00000037 - time (sec): 40.36 - samples/sec: 8.33 - lr: 0.000037 - momentum: 0.000000
|
309 |
+
2024-06-23 23:47:10,121 epoch 14 - iter 24/39 - loss 0.00000034 - time (sec): 45.26 - samples/sec: 8.48 - lr: 0.000037 - momentum: 0.000000
|
310 |
+
2024-06-23 23:47:14,955 epoch 14 - iter 27/39 - loss 0.00000035 - time (sec): 50.09 - samples/sec: 8.62 - lr: 0.000037 - momentum: 0.000000
|
311 |
+
2024-06-23 23:47:20,034 epoch 14 - iter 30/39 - loss 0.00550655 - time (sec): 55.17 - samples/sec: 8.70 - lr: 0.000037 - momentum: 0.000000
|
312 |
+
2024-06-23 23:47:27,595 epoch 14 - iter 33/39 - loss 0.00500599 - time (sec): 62.73 - samples/sec: 8.42 - lr: 0.000037 - momentum: 0.000000
|
313 |
+
2024-06-23 23:47:33,013 epoch 14 - iter 36/39 - loss 0.00458946 - time (sec): 68.15 - samples/sec: 8.45 - lr: 0.000036 - momentum: 0.000000
|
314 |
+
2024-06-23 23:47:37,132 epoch 14 - iter 39/39 - loss 0.00438734 - time (sec): 72.27 - samples/sec: 8.54 - lr: 0.000036 - momentum: 0.000000
|
315 |
+
2024-06-23 23:47:37,132 ----------------------------------------------------------------------------------------------------
|
316 |
+
2024-06-23 23:47:37,132 EPOCH 14 done: loss 0.0044 - lr: 0.000036
|
317 |
+
2024-06-23 23:47:41,916 DEV : loss 1.564867377281189 - f1-score (micro avg) 0.8553
|
318 |
+
2024-06-23 23:47:43,632 ----------------------------------------------------------------------------------------------------
|
319 |
+
2024-06-23 23:47:51,205 epoch 15 - iter 3/39 - loss 0.00000192 - time (sec): 7.57 - samples/sec: 6.34 - lr: 0.000036 - momentum: 0.000000
|
320 |
+
2024-06-23 23:47:56,226 epoch 15 - iter 6/39 - loss 0.00000160 - time (sec): 12.59 - samples/sec: 7.62 - lr: 0.000036 - momentum: 0.000000
|
321 |
+
2024-06-23 23:48:03,590 epoch 15 - iter 9/39 - loss 0.00000119 - time (sec): 19.96 - samples/sec: 7.22 - lr: 0.000036 - momentum: 0.000000
|
322 |
+
2024-06-23 23:48:09,817 epoch 15 - iter 12/39 - loss 0.00000146 - time (sec): 26.18 - samples/sec: 7.33 - lr: 0.000036 - momentum: 0.000000
|
323 |
+
2024-06-23 23:48:14,630 epoch 15 - iter 15/39 - loss 0.00000159 - time (sec): 31.00 - samples/sec: 7.74 - lr: 0.000036 - momentum: 0.000000
|
324 |
+
2024-06-23 23:48:20,535 epoch 15 - iter 18/39 - loss 0.00003042 - time (sec): 36.90 - samples/sec: 7.80 - lr: 0.000036 - momentum: 0.000000
|
325 |
+
2024-06-23 23:48:25,523 epoch 15 - iter 21/39 - loss 0.00002633 - time (sec): 41.89 - samples/sec: 8.02 - lr: 0.000036 - momentum: 0.000000
|
326 |
+
2024-06-23 23:48:30,109 epoch 15 - iter 24/39 - loss 0.00002378 - time (sec): 46.48 - samples/sec: 8.26 - lr: 0.000036 - momentum: 0.000000
|
327 |
+
2024-06-23 23:48:36,807 epoch 15 - iter 27/39 - loss 0.00002128 - time (sec): 53.17 - samples/sec: 8.12 - lr: 0.000035 - momentum: 0.000000
|
328 |
+
2024-06-23 23:48:41,596 epoch 15 - iter 30/39 - loss 0.00005866 - time (sec): 57.96 - samples/sec: 8.28 - lr: 0.000035 - momentum: 0.000000
|
329 |
+
2024-06-23 23:48:46,838 epoch 15 - iter 33/39 - loss 0.00005338 - time (sec): 63.21 - samples/sec: 8.35 - lr: 0.000035 - momentum: 0.000000
|
330 |
+
2024-06-23 23:48:51,729 epoch 15 - iter 36/39 - loss 0.00022543 - time (sec): 68.10 - samples/sec: 8.46 - lr: 0.000035 - momentum: 0.000000
|
331 |
+
2024-06-23 23:48:55,746 epoch 15 - iter 39/39 - loss 0.00021046 - time (sec): 72.11 - samples/sec: 8.56 - lr: 0.000035 - momentum: 0.000000
|
332 |
+
2024-06-23 23:48:55,747 ----------------------------------------------------------------------------------------------------
|
333 |
+
2024-06-23 23:48:55,747 EPOCH 15 done: loss 0.0002 - lr: 0.000035
|
334 |
+
2024-06-23 23:49:00,550 DEV : loss 1.6431025266647339 - f1-score (micro avg) 0.8947
|
335 |
+
2024-06-23 23:49:02,263 ----------------------------------------------------------------------------------------------------
|
336 |
+
2024-06-23 23:49:07,994 epoch 16 - iter 3/39 - loss 0.00000012 - time (sec): 5.73 - samples/sec: 8.38 - lr: 0.000035 - momentum: 0.000000
|
337 |
+
2024-06-23 23:49:12,702 epoch 16 - iter 6/39 - loss 0.00001361 - time (sec): 10.44 - samples/sec: 9.20 - lr: 0.000035 - momentum: 0.000000
|
338 |
+
2024-06-23 23:49:17,834 epoch 16 - iter 9/39 - loss 0.00000911 - time (sec): 15.57 - samples/sec: 9.25 - lr: 0.000035 - momentum: 0.000000
|
339 |
+
2024-06-23 23:49:22,603 epoch 16 - iter 12/39 - loss 0.00000783 - time (sec): 20.34 - samples/sec: 9.44 - lr: 0.000035 - momentum: 0.000000
|
340 |
+
2024-06-23 23:49:28,901 epoch 16 - iter 15/39 - loss 0.00000630 - time (sec): 26.64 - samples/sec: 9.01 - lr: 0.000034 - momentum: 0.000000
|
341 |
+
2024-06-23 23:49:33,590 epoch 16 - iter 18/39 - loss 0.00000537 - time (sec): 31.33 - samples/sec: 9.19 - lr: 0.000034 - momentum: 0.000000
|
342 |
+
2024-06-23 23:49:41,448 epoch 16 - iter 21/39 - loss 0.00000466 - time (sec): 39.18 - samples/sec: 8.57 - lr: 0.000034 - momentum: 0.000000
|
343 |
+
2024-06-23 23:49:46,193 epoch 16 - iter 24/39 - loss 0.00000410 - time (sec): 43.93 - samples/sec: 8.74 - lr: 0.000034 - momentum: 0.000000
|
344 |
+
2024-06-23 23:49:51,556 epoch 16 - iter 27/39 - loss 0.00000387 - time (sec): 49.29 - samples/sec: 8.76 - lr: 0.000034 - momentum: 0.000000
|
345 |
+
2024-06-23 23:49:57,993 epoch 16 - iter 30/39 - loss 0.00000350 - time (sec): 55.73 - samples/sec: 8.61 - lr: 0.000034 - momentum: 0.000000
|
346 |
+
2024-06-23 23:50:03,689 epoch 16 - iter 33/39 - loss 0.00000323 - time (sec): 61.42 - samples/sec: 8.60 - lr: 0.000034 - momentum: 0.000000
|
347 |
+
2024-06-23 23:50:08,966 epoch 16 - iter 36/39 - loss 0.00000297 - time (sec): 66.70 - samples/sec: 8.64 - lr: 0.000034 - momentum: 0.000000
|
348 |
+
2024-06-23 23:50:14,750 epoch 16 - iter 39/39 - loss 0.00000279 - time (sec): 72.49 - samples/sec: 8.51 - lr: 0.000034 - momentum: 0.000000
|
349 |
+
2024-06-23 23:50:14,751 ----------------------------------------------------------------------------------------------------
|
350 |
+
2024-06-23 23:50:14,751 EPOCH 16 done: loss 0.0000 - lr: 0.000034
|
351 |
+
2024-06-23 23:50:19,622 DEV : loss 1.6324049234390259 - f1-score (micro avg) 0.8684
|
352 |
+
2024-06-23 23:50:21,218 ----------------------------------------------------------------------------------------------------
|
353 |
+
2024-06-23 23:50:26,329 epoch 17 - iter 3/39 - loss 0.00000024 - time (sec): 5.11 - samples/sec: 9.39 - lr: 0.000034 - momentum: 0.000000
|
354 |
+
2024-06-23 23:50:32,142 epoch 17 - iter 6/39 - loss 0.00000164 - time (sec): 10.92 - samples/sec: 8.79 - lr: 0.000033 - momentum: 0.000000
|
355 |
+
2024-06-23 23:50:38,584 epoch 17 - iter 9/39 - loss 0.00000124 - time (sec): 17.37 - samples/sec: 8.29 - lr: 0.000033 - momentum: 0.000000
|
356 |
+
2024-06-23 23:50:45,354 epoch 17 - iter 12/39 - loss 0.00000096 - time (sec): 24.13 - samples/sec: 7.96 - lr: 0.000033 - momentum: 0.000000
|
357 |
+
2024-06-23 23:50:50,553 epoch 17 - iter 15/39 - loss 0.00000122 - time (sec): 29.33 - samples/sec: 8.18 - lr: 0.000033 - momentum: 0.000000
|
358 |
+
2024-06-23 23:50:55,313 epoch 17 - iter 18/39 - loss 0.00000168 - time (sec): 34.09 - samples/sec: 8.45 - lr: 0.000033 - momentum: 0.000000
|
359 |
+
2024-06-23 23:51:01,865 epoch 17 - iter 21/39 - loss 0.00000145 - time (sec): 40.65 - samples/sec: 8.27 - lr: 0.000033 - momentum: 0.000000
|
360 |
+
2024-06-23 23:51:07,839 epoch 17 - iter 24/39 - loss 0.00000311 - time (sec): 46.62 - samples/sec: 8.24 - lr: 0.000033 - momentum: 0.000000
|
361 |
+
2024-06-23 23:51:14,693 epoch 17 - iter 27/39 - loss 0.00000279 - time (sec): 53.47 - samples/sec: 8.08 - lr: 0.000033 - momentum: 0.000000
|
362 |
+
2024-06-23 23:51:19,818 epoch 17 - iter 30/39 - loss 0.00000253 - time (sec): 58.60 - samples/sec: 8.19 - lr: 0.000033 - momentum: 0.000000
|
363 |
+
2024-06-23 23:51:24,481 epoch 17 - iter 33/39 - loss 0.00000231 - time (sec): 63.26 - samples/sec: 8.35 - lr: 0.000032 - momentum: 0.000000
|
364 |
+
2024-06-23 23:51:29,815 epoch 17 - iter 36/39 - loss 0.00000212 - time (sec): 68.60 - samples/sec: 8.40 - lr: 0.000032 - momentum: 0.000000
|
365 |
+
2024-06-23 23:51:33,764 epoch 17 - iter 39/39 - loss 0.00000200 - time (sec): 72.55 - samples/sec: 8.50 - lr: 0.000032 - momentum: 0.000000
|
366 |
+
2024-06-23 23:51:33,765 ----------------------------------------------------------------------------------------------------
|
367 |
+
2024-06-23 23:51:33,765 EPOCH 17 done: loss 0.0000 - lr: 0.000032
|
368 |
+
2024-06-23 23:51:38,698 DEV : loss 1.6667038202285767 - f1-score (micro avg) 0.8947
|
369 |
+
2024-06-23 23:51:40,298 ----------------------------------------------------------------------------------------------------
|
370 |
+
2024-06-23 23:51:46,093 epoch 18 - iter 3/39 - loss 0.00000386 - time (sec): 5.79 - samples/sec: 8.29 - lr: 0.000032 - momentum: 0.000000
|
371 |
+
2024-06-23 23:51:52,974 epoch 18 - iter 6/39 - loss 0.00000209 - time (sec): 12.67 - samples/sec: 7.57 - lr: 0.000032 - momentum: 0.000000
|
372 |
+
2024-06-23 23:51:57,585 epoch 18 - iter 9/39 - loss 0.00000145 - time (sec): 17.29 - samples/sec: 8.33 - lr: 0.000032 - momentum: 0.000000
|
373 |
+
2024-06-23 23:52:02,370 epoch 18 - iter 12/39 - loss 0.00000112 - time (sec): 22.07 - samples/sec: 8.70 - lr: 0.000032 - momentum: 0.000000
|
374 |
+
2024-06-23 23:52:07,154 epoch 18 - iter 15/39 - loss 0.00000090 - time (sec): 26.85 - samples/sec: 8.94 - lr: 0.000032 - momentum: 0.000000
|
375 |
+
2024-06-23 23:52:14,195 epoch 18 - iter 18/39 - loss 0.00000079 - time (sec): 33.90 - samples/sec: 8.50 - lr: 0.000032 - momentum: 0.000000
|
376 |
+
2024-06-23 23:52:20,573 epoch 18 - iter 21/39 - loss 0.00000069 - time (sec): 40.27 - samples/sec: 8.34 - lr: 0.000032 - momentum: 0.000000
|
377 |
+
2024-06-23 23:52:26,312 epoch 18 - iter 24/39 - loss 0.00000062 - time (sec): 46.01 - samples/sec: 8.35 - lr: 0.000031 - momentum: 0.000000
|
378 |
+
2024-06-23 23:52:31,041 epoch 18 - iter 27/39 - loss 0.00000062 - time (sec): 50.74 - samples/sec: 8.51 - lr: 0.000031 - momentum: 0.000000
|
379 |
+
2024-06-23 23:52:36,077 epoch 18 - iter 30/39 - loss 0.00000057 - time (sec): 55.78 - samples/sec: 8.61 - lr: 0.000031 - momentum: 0.000000
|
380 |
+
2024-06-23 23:52:42,035 epoch 18 - iter 33/39 - loss 0.00000069 - time (sec): 61.73 - samples/sec: 8.55 - lr: 0.000031 - momentum: 0.000000
|
381 |
+
2024-06-23 23:52:47,259 epoch 18 - iter 36/39 - loss 0.00000076 - time (sec): 66.96 - samples/sec: 8.60 - lr: 0.000031 - momentum: 0.000000
|
382 |
+
2024-06-23 23:52:52,788 epoch 18 - iter 39/39 - loss 0.00000071 - time (sec): 72.49 - samples/sec: 8.51 - lr: 0.000031 - momentum: 0.000000
|
383 |
+
2024-06-23 23:52:52,788 ----------------------------------------------------------------------------------------------------
|
384 |
+
2024-06-23 23:52:52,788 EPOCH 18 done: loss 0.0000 - lr: 0.000031
|
385 |
+
2024-06-23 23:52:57,710 DEV : loss 1.6734051704406738 - f1-score (micro avg) 0.8947
|
386 |
+
2024-06-23 23:52:59,305 ----------------------------------------------------------------------------------------------------
|
387 |
+
2024-06-23 23:53:04,600 epoch 19 - iter 3/39 - loss 0.00000006 - time (sec): 5.29 - samples/sec: 9.07 - lr: 0.000031 - momentum: 0.000000
|
388 |
+
2024-06-23 23:53:09,523 epoch 19 - iter 6/39 - loss 0.00000009 - time (sec): 10.22 - samples/sec: 9.40 - lr: 0.000031 - momentum: 0.000000
|
389 |
+
2024-06-23 23:53:14,402 epoch 19 - iter 9/39 - loss 0.00000056 - time (sec): 15.10 - samples/sec: 9.54 - lr: 0.000031 - momentum: 0.000000
|
390 |
+
2024-06-23 23:53:19,255 epoch 19 - iter 12/39 - loss 0.00000043 - time (sec): 19.95 - samples/sec: 9.62 - lr: 0.000030 - momentum: 0.000000
|
391 |
+
2024-06-23 23:53:24,050 epoch 19 - iter 15/39 - loss 0.00000035 - time (sec): 24.74 - samples/sec: 9.70 - lr: 0.000030 - momentum: 0.000000
|
392 |
+
2024-06-23 23:53:28,857 epoch 19 - iter 18/39 - loss 0.00000030 - time (sec): 29.55 - samples/sec: 9.75 - lr: 0.000030 - momentum: 0.000000
|
393 |
+
2024-06-23 23:53:35,437 epoch 19 - iter 21/39 - loss 0.00000079 - time (sec): 36.13 - samples/sec: 9.30 - lr: 0.000030 - momentum: 0.000000
|
394 |
+
2024-06-23 23:53:41,864 epoch 19 - iter 24/39 - loss 0.00000073 - time (sec): 42.56 - samples/sec: 9.02 - lr: 0.000030 - momentum: 0.000000
|
395 |
+
2024-06-23 23:53:46,592 epoch 19 - iter 27/39 - loss 0.00000066 - time (sec): 47.29 - samples/sec: 9.14 - lr: 0.000030 - momentum: 0.000000
|
396 |
+
2024-06-23 23:53:52,506 epoch 19 - iter 30/39 - loss 0.00000065 - time (sec): 53.20 - samples/sec: 9.02 - lr: 0.000030 - momentum: 0.000000
|
397 |
+
2024-06-23 23:53:58,434 epoch 19 - iter 33/39 - loss 0.00000060 - time (sec): 59.13 - samples/sec: 8.93 - lr: 0.000030 - momentum: 0.000000
|
398 |
+
2024-06-23 23:54:06,388 epoch 19 - iter 36/39 - loss 0.00000057 - time (sec): 67.08 - samples/sec: 8.59 - lr: 0.000030 - momentum: 0.000000
|
399 |
+
2024-06-23 23:54:11,710 epoch 19 - iter 39/39 - loss 0.00000053 - time (sec): 72.40 - samples/sec: 8.52 - lr: 0.000030 - momentum: 0.000000
|
400 |
+
2024-06-23 23:54:11,711 ----------------------------------------------------------------------------------------------------
|
401 |
+
2024-06-23 23:54:11,711 EPOCH 19 done: loss 0.0000 - lr: 0.000030
|
402 |
+
2024-06-23 23:54:16,561 DEV : loss 1.6832987070083618 - f1-score (micro avg) 0.8947
|
403 |
+
2024-06-23 23:54:18,283 ----------------------------------------------------------------------------------------------------
|
404 |
+
2024-06-23 23:54:23,245 epoch 20 - iter 3/39 - loss 0.00000062 - time (sec): 4.96 - samples/sec: 9.68 - lr: 0.000029 - momentum: 0.000000
|
405 |
+
2024-06-23 23:54:29,074 epoch 20 - iter 6/39 - loss 0.00000034 - time (sec): 10.79 - samples/sec: 8.90 - lr: 0.000029 - momentum: 0.000000
|
406 |
+
2024-06-23 23:54:34,112 epoch 20 - iter 9/39 - loss 0.00000028 - time (sec): 15.83 - samples/sec: 9.10 - lr: 0.000029 - momentum: 0.000000
|
407 |
+
2024-06-23 23:54:38,954 epoch 20 - iter 12/39 - loss 0.00000027 - time (sec): 20.67 - samples/sec: 9.29 - lr: 0.000029 - momentum: 0.000000
|
408 |
+
2024-06-23 23:54:43,982 epoch 20 - iter 15/39 - loss 0.00000064 - time (sec): 25.70 - samples/sec: 9.34 - lr: 0.000029 - momentum: 0.000000
|
409 |
+
2024-06-23 23:54:48,652 epoch 20 - iter 18/39 - loss 0.00000062 - time (sec): 30.37 - samples/sec: 9.48 - lr: 0.000029 - momentum: 0.000000
|
410 |
+
2024-06-23 23:54:54,811 epoch 20 - iter 21/39 - loss 0.00000055 - time (sec): 36.53 - samples/sec: 9.20 - lr: 0.000029 - momentum: 0.000000
|
411 |
+
2024-06-23 23:55:00,691 epoch 20 - iter 24/39 - loss 0.00000048 - time (sec): 42.41 - samples/sec: 9.06 - lr: 0.000029 - momentum: 0.000000
|
412 |
+
2024-06-23 23:55:07,972 epoch 20 - iter 27/39 - loss 0.00000043 - time (sec): 49.69 - samples/sec: 8.69 - lr: 0.000029 - momentum: 0.000000
|
413 |
+
2024-06-23 23:55:14,702 epoch 20 - iter 30/39 - loss 0.00000041 - time (sec): 56.42 - samples/sec: 8.51 - lr: 0.000028 - momentum: 0.000000
|
414 |
+
2024-06-23 23:55:19,760 epoch 20 - iter 33/39 - loss 0.00000038 - time (sec): 61.48 - samples/sec: 8.59 - lr: 0.000028 - momentum: 0.000000
|
415 |
+
2024-06-23 23:55:26,384 epoch 20 - iter 36/39 - loss 0.00000038 - time (sec): 68.10 - samples/sec: 8.46 - lr: 0.000028 - momentum: 0.000000
|
416 |
+
2024-06-23 23:55:30,414 epoch 20 - iter 39/39 - loss 0.00000036 - time (sec): 72.13 - samples/sec: 8.55 - lr: 0.000028 - momentum: 0.000000
|
417 |
+
2024-06-23 23:55:30,414 ----------------------------------------------------------------------------------------------------
|
418 |
+
2024-06-23 23:55:30,415 EPOCH 20 done: loss 0.0000 - lr: 0.000028
|
419 |
+
2024-06-23 23:55:35,248 DEV : loss 1.6803444623947144 - f1-score (micro avg) 0.8947
|
420 |
+
2024-06-23 23:55:36,942 ----------------------------------------------------------------------------------------------------
|
421 |
+
2024-06-23 23:55:43,422 epoch 21 - iter 3/39 - loss 0.00000011 - time (sec): 6.48 - samples/sec: 7.41 - lr: 0.000028 - momentum: 0.000000
|
422 |
+
2024-06-23 23:55:48,506 epoch 21 - iter 6/39 - loss 0.00000009 - time (sec): 11.56 - samples/sec: 8.30 - lr: 0.000028 - momentum: 0.000000
|
423 |
+
2024-06-23 23:55:53,273 epoch 21 - iter 9/39 - loss 0.00000009 - time (sec): 16.33 - samples/sec: 8.82 - lr: 0.000028 - momentum: 0.000000
|
424 |
+
2024-06-23 23:55:59,004 epoch 21 - iter 12/39 - loss 0.00000009 - time (sec): 22.06 - samples/sec: 8.70 - lr: 0.000028 - momentum: 0.000000
|
425 |
+
2024-06-23 23:56:03,991 epoch 21 - iter 15/39 - loss 0.00000104 - time (sec): 27.05 - samples/sec: 8.87 - lr: 0.000028 - momentum: 0.000000
|
426 |
+
2024-06-23 23:56:10,166 epoch 21 - iter 18/39 - loss 0.00000090 - time (sec): 33.22 - samples/sec: 8.67 - lr: 0.000028 - momentum: 0.000000
|
427 |
+
2024-06-23 23:56:14,886 epoch 21 - iter 21/39 - loss 0.00000079 - time (sec): 37.94 - samples/sec: 8.86 - lr: 0.000027 - momentum: 0.000000
|
428 |
+
2024-06-23 23:56:20,191 epoch 21 - iter 24/39 - loss 0.00000069 - time (sec): 43.25 - samples/sec: 8.88 - lr: 0.000027 - momentum: 0.000000
|
429 |
+
2024-06-23 23:56:26,244 epoch 21 - iter 27/39 - loss 0.00000068 - time (sec): 49.30 - samples/sec: 8.76 - lr: 0.000027 - momentum: 0.000000
|
430 |
+
2024-06-23 23:56:31,439 epoch 21 - iter 30/39 - loss 0.00000062 - time (sec): 54.50 - samples/sec: 8.81 - lr: 0.000027 - momentum: 0.000000
|
431 |
+
2024-06-23 23:56:38,526 epoch 21 - iter 33/39 - loss 0.00000070 - time (sec): 61.58 - samples/sec: 8.57 - lr: 0.000027 - momentum: 0.000000
|
432 |
+
2024-06-23 23:56:43,558 epoch 21 - iter 36/39 - loss 0.00000065 - time (sec): 66.62 - samples/sec: 8.65 - lr: 0.000027 - momentum: 0.000000
|
433 |
+
2024-06-23 23:56:49,100 epoch 21 - iter 39/39 - loss 0.00000061 - time (sec): 72.16 - samples/sec: 8.55 - lr: 0.000027 - momentum: 0.000000
|
434 |
+
2024-06-23 23:56:49,100 ----------------------------------------------------------------------------------------------------
|
435 |
+
2024-06-23 23:56:49,100 EPOCH 21 done: loss 0.0000 - lr: 0.000027
|
436 |
+
2024-06-23 23:56:53,869 DEV : loss 1.6836782693862915 - f1-score (micro avg) 0.8947
|
437 |
+
2024-06-23 23:56:55,587 ----------------------------------------------------------------------------------------------------
|
438 |
+
2024-06-23 23:57:00,339 epoch 22 - iter 3/39 - loss 0.00000070 - time (sec): 4.75 - samples/sec: 10.10 - lr: 0.000027 - momentum: 0.000000
|
439 |
+
2024-06-23 23:57:05,168 epoch 22 - iter 6/39 - loss 0.00000040 - time (sec): 9.58 - samples/sec: 10.02 - lr: 0.000027 - momentum: 0.000000
|
440 |
+
2024-06-23 23:57:09,879 epoch 22 - iter 9/39 - loss 0.00000028 - time (sec): 14.29 - samples/sec: 10.08 - lr: 0.000026 - momentum: 0.000000
|
441 |
+
2024-06-23 23:57:15,130 epoch 22 - iter 12/39 - loss 0.00000022 - time (sec): 19.54 - samples/sec: 9.82 - lr: 0.000026 - momentum: 0.000000
|
442 |
+
2024-06-23 23:57:20,147 epoch 22 - iter 15/39 - loss 0.00000019 - time (sec): 24.56 - samples/sec: 9.77 - lr: 0.000026 - momentum: 0.000000
|
443 |
+
2024-06-23 23:57:28,906 epoch 22 - iter 18/39 - loss 0.00000045 - time (sec): 33.32 - samples/sec: 8.64 - lr: 0.000026 - momentum: 0.000000
|
444 |
+
2024-06-23 23:57:33,703 epoch 22 - iter 21/39 - loss 0.00000040 - time (sec): 38.11 - samples/sec: 8.82 - lr: 0.000026 - momentum: 0.000000
|
445 |
+
2024-06-23 23:57:38,431 epoch 22 - iter 24/39 - loss 0.00000037 - time (sec): 42.84 - samples/sec: 8.96 - lr: 0.000026 - momentum: 0.000000
|
446 |
+
2024-06-23 23:57:44,678 epoch 22 - iter 27/39 - loss 0.00000039 - time (sec): 49.09 - samples/sec: 8.80 - lr: 0.000026 - momentum: 0.000000
|
447 |
+
2024-06-23 23:57:49,384 epoch 22 - iter 30/39 - loss 0.00000037 - time (sec): 53.80 - samples/sec: 8.92 - lr: 0.000026 - momentum: 0.000000
|
448 |
+
2024-06-23 23:57:55,518 epoch 22 - iter 33/39 - loss 0.00000036 - time (sec): 59.93 - samples/sec: 8.81 - lr: 0.000026 - momentum: 0.000000
|
449 |
+
2024-06-23 23:58:01,846 epoch 22 - iter 36/39 - loss 0.00000034 - time (sec): 66.26 - samples/sec: 8.69 - lr: 0.000026 - momentum: 0.000000
|
450 |
+
2024-06-23 23:58:07,646 epoch 22 - iter 39/39 - loss 0.00000032 - time (sec): 72.06 - samples/sec: 8.56 - lr: 0.000025 - momentum: 0.000000
|
451 |
+
2024-06-23 23:58:07,647 ----------------------------------------------------------------------------------------------------
|
452 |
+
2024-06-23 23:58:07,647 EPOCH 22 done: loss 0.0000 - lr: 0.000025
|
453 |
+
2024-06-23 23:58:12,485 DEV : loss 1.6798239946365356 - f1-score (micro avg) 0.8947
|
454 |
+
2024-06-23 23:58:14,187 ----------------------------------------------------------------------------------------------------
|
455 |
+
2024-06-23 23:58:19,952 epoch 23 - iter 3/39 - loss 0.00000012 - time (sec): 5.76 - samples/sec: 8.33 - lr: 0.000025 - momentum: 0.000000
|
456 |
+
2024-06-23 23:58:24,724 epoch 23 - iter 6/39 - loss 0.00000025 - time (sec): 10.54 - samples/sec: 9.11 - lr: 0.000025 - momentum: 0.000000
|
457 |
+
2024-06-23 23:58:29,553 epoch 23 - iter 9/39 - loss 0.00000020 - time (sec): 15.36 - samples/sec: 9.37 - lr: 0.000025 - momentum: 0.000000
|
458 |
+
2024-06-23 23:58:34,240 epoch 23 - iter 12/39 - loss 0.00000017 - time (sec): 20.05 - samples/sec: 9.58 - lr: 0.000025 - momentum: 0.000000
|
459 |
+
2024-06-23 23:58:39,532 epoch 23 - iter 15/39 - loss 0.00000016 - time (sec): 25.34 - samples/sec: 9.47 - lr: 0.000025 - momentum: 0.000000
|
460 |
+
2024-06-23 23:58:46,114 epoch 23 - iter 18/39 - loss 0.00000016 - time (sec): 31.93 - samples/sec: 9.02 - lr: 0.000025 - momentum: 0.000000
|
461 |
+
2024-06-23 23:58:51,076 epoch 23 - iter 21/39 - loss 0.00000017 - time (sec): 36.89 - samples/sec: 9.11 - lr: 0.000025 - momentum: 0.000000
|
462 |
+
2024-06-23 23:58:58,437 epoch 23 - iter 24/39 - loss 0.00000016 - time (sec): 44.25 - samples/sec: 8.68 - lr: 0.000025 - momentum: 0.000000
|
463 |
+
2024-06-23 23:59:05,351 epoch 23 - iter 27/39 - loss 0.00000016 - time (sec): 51.16 - samples/sec: 8.44 - lr: 0.000024 - momentum: 0.000000
|
464 |
+
2024-06-23 23:59:11,049 epoch 23 - iter 30/39 - loss 0.00000015 - time (sec): 56.86 - samples/sec: 8.44 - lr: 0.000024 - momentum: 0.000000
|
465 |
+
2024-06-23 23:59:16,119 epoch 23 - iter 33/39 - loss 0.00000066 - time (sec): 61.93 - samples/sec: 8.53 - lr: 0.000024 - momentum: 0.000000
|
466 |
+
2024-06-23 23:59:21,829 epoch 23 - iter 36/39 - loss 0.00000064 - time (sec): 67.64 - samples/sec: 8.52 - lr: 0.000024 - momentum: 0.000000
|
467 |
+
2024-06-23 23:59:25,878 epoch 23 - iter 39/39 - loss 0.00000060 - time (sec): 71.69 - samples/sec: 8.61 - lr: 0.000024 - momentum: 0.000000
|
468 |
+
2024-06-23 23:59:25,878 ----------------------------------------------------------------------------------------------------
|
469 |
+
2024-06-23 23:59:25,878 EPOCH 23 done: loss 0.0000 - lr: 0.000024
|
470 |
+
2024-06-23 23:59:30,684 DEV : loss 1.686423897743225 - f1-score (micro avg) 0.8947
|
471 |
+
2024-06-23 23:59:32,382 ----------------------------------------------------------------------------------------------------
|
472 |
+
2024-06-23 23:59:37,585 epoch 24 - iter 3/39 - loss 0.00000041 - time (sec): 5.20 - samples/sec: 9.23 - lr: 0.000024 - momentum: 0.000000
|
473 |
+
2024-06-23 23:59:42,342 epoch 24 - iter 6/39 - loss 0.00000028 - time (sec): 9.96 - samples/sec: 9.64 - lr: 0.000024 - momentum: 0.000000
|
474 |
+
2024-06-23 23:59:48,252 epoch 24 - iter 9/39 - loss 0.00000020 - time (sec): 15.87 - samples/sec: 9.07 - lr: 0.000024 - momentum: 0.000000
|
475 |
+
2024-06-23 23:59:53,044 epoch 24 - iter 12/39 - loss 0.00000017 - time (sec): 20.66 - samples/sec: 9.29 - lr: 0.000024 - momentum: 0.000000
|
476 |
+
2024-06-23 23:59:58,797 epoch 24 - iter 15/39 - loss 0.00000020 - time (sec): 26.41 - samples/sec: 9.09 - lr: 0.000024 - momentum: 0.000000
|
477 |
+
2024-06-24 00:00:03,629 epoch 24 - iter 18/39 - loss 0.00000017 - time (sec): 31.25 - samples/sec: 9.22 - lr: 0.000023 - momentum: 0.000000
|
478 |
+
2024-06-24 00:00:08,808 epoch 24 - iter 21/39 - loss 0.00000015 - time (sec): 36.42 - samples/sec: 9.22 - lr: 0.000023 - momentum: 0.000000
|
479 |
+
2024-06-24 00:00:14,820 epoch 24 - iter 24/39 - loss 0.00000014 - time (sec): 42.44 - samples/sec: 9.05 - lr: 0.000023 - momentum: 0.000000
|
480 |
+
2024-06-24 00:00:20,596 epoch 24 - iter 27/39 - loss 0.00000019 - time (sec): 48.21 - samples/sec: 8.96 - lr: 0.000023 - momentum: 0.000000
|
481 |
+
2024-06-24 00:00:26,162 epoch 24 - iter 30/39 - loss 0.00000018 - time (sec): 53.78 - samples/sec: 8.93 - lr: 0.000023 - momentum: 0.000000
|
482 |
+
2024-06-24 00:00:30,796 epoch 24 - iter 33/39 - loss 0.00000020 - time (sec): 58.41 - samples/sec: 9.04 - lr: 0.000023 - momentum: 0.000000
|
483 |
+
2024-06-24 00:00:40,090 epoch 24 - iter 36/39 - loss 0.00000019 - time (sec): 67.71 - samples/sec: 8.51 - lr: 0.000023 - momentum: 0.000000
|
484 |
+
2024-06-24 00:00:44,496 epoch 24 - iter 39/39 - loss 0.00000018 - time (sec): 72.11 - samples/sec: 8.56 - lr: 0.000023 - momentum: 0.000000
|
485 |
+
2024-06-24 00:00:44,497 ----------------------------------------------------------------------------------------------------
|
486 |
+
2024-06-24 00:00:44,497 EPOCH 24 done: loss 0.0000 - lr: 0.000023
|
487 |
+
2024-06-24 00:00:49,348 DEV : loss 1.6934013366699219 - f1-score (micro avg) 0.8947
|
488 |
+
2024-06-24 00:00:51,073 ----------------------------------------------------------------------------------------------------
|
489 |
+
2024-06-24 00:00:55,786 epoch 25 - iter 3/39 - loss 0.00000015 - time (sec): 4.71 - samples/sec: 10.19 - lr: 0.000023 - momentum: 0.000000
|
490 |
+
2024-06-24 00:01:01,366 epoch 25 - iter 6/39 - loss 0.00000032 - time (sec): 10.29 - samples/sec: 9.33 - lr: 0.000022 - momentum: 0.000000
|
491 |
+
2024-06-24 00:01:06,852 epoch 25 - iter 9/39 - loss 0.00000051 - time (sec): 15.78 - samples/sec: 9.13 - lr: 0.000022 - momentum: 0.000000
|
492 |
+
2024-06-24 00:01:11,651 epoch 25 - iter 12/39 - loss 0.00000039 - time (sec): 20.58 - samples/sec: 9.33 - lr: 0.000022 - momentum: 0.000000
|
493 |
+
2024-06-24 00:01:16,386 epoch 25 - iter 15/39 - loss 0.00000037 - time (sec): 25.31 - samples/sec: 9.48 - lr: 0.000022 - momentum: 0.000000
|
494 |
+
2024-06-24 00:01:21,284 epoch 25 - iter 18/39 - loss 0.00000033 - time (sec): 30.21 - samples/sec: 9.53 - lr: 0.000022 - momentum: 0.000000
|
495 |
+
2024-06-24 00:01:25,999 epoch 25 - iter 21/39 - loss 0.00000030 - time (sec): 34.93 - samples/sec: 9.62 - lr: 0.000022 - momentum: 0.000000
|
496 |
+
2024-06-24 00:01:31,195 epoch 25 - iter 24/39 - loss 0.00000026 - time (sec): 40.12 - samples/sec: 9.57 - lr: 0.000022 - momentum: 0.000000
|
497 |
+
2024-06-24 00:01:38,182 epoch 25 - iter 27/39 - loss 0.00000025 - time (sec): 47.11 - samples/sec: 9.17 - lr: 0.000022 - momentum: 0.000000
|
498 |
+
2024-06-24 00:01:44,519 epoch 25 - iter 30/39 - loss 0.00000026 - time (sec): 53.45 - samples/sec: 8.98 - lr: 0.000022 - momentum: 0.000000
|
499 |
+
2024-06-24 00:01:51,469 epoch 25 - iter 33/39 - loss 0.00000024 - time (sec): 60.39 - samples/sec: 8.74 - lr: 0.000022 - momentum: 0.000000
|
500 |
+
2024-06-24 00:01:58,551 epoch 25 - iter 36/39 - loss 0.00000023 - time (sec): 67.48 - samples/sec: 8.54 - lr: 0.000021 - momentum: 0.000000
|
501 |
+
2024-06-24 00:02:03,222 epoch 25 - iter 39/39 - loss 0.00000029 - time (sec): 72.15 - samples/sec: 8.55 - lr: 0.000021 - momentum: 0.000000
|
502 |
+
2024-06-24 00:02:03,222 ----------------------------------------------------------------------------------------------------
|
503 |
+
2024-06-24 00:02:03,222 EPOCH 25 done: loss 0.0000 - lr: 0.000021
|
504 |
+
2024-06-24 00:02:08,000 DEV : loss 1.6937851905822754 - f1-score (micro avg) 0.8947
|
505 |
+
2024-06-24 00:02:09,719 ----------------------------------------------------------------------------------------------------
|
506 |
+
2024-06-24 00:02:15,885 epoch 26 - iter 3/39 - loss 0.00000005 - time (sec): 6.16 - samples/sec: 7.79 - lr: 0.000021 - momentum: 0.000000
|
507 |
+
2024-06-24 00:02:20,586 epoch 26 - iter 6/39 - loss 0.00000007 - time (sec): 10.87 - samples/sec: 8.84 - lr: 0.000021 - momentum: 0.000000
|
508 |
+
2024-06-24 00:02:26,619 epoch 26 - iter 9/39 - loss 0.00000007 - time (sec): 16.90 - samples/sec: 8.52 - lr: 0.000021 - momentum: 0.000000
|
509 |
+
2024-06-24 00:02:33,062 epoch 26 - iter 12/39 - loss 0.00000006 - time (sec): 23.34 - samples/sec: 8.23 - lr: 0.000021 - momentum: 0.000000
|
510 |
+
2024-06-24 00:02:39,697 epoch 26 - iter 15/39 - loss 0.00000005 - time (sec): 29.98 - samples/sec: 8.01 - lr: 0.000021 - momentum: 0.000000
|
511 |
+
2024-06-24 00:02:44,696 epoch 26 - iter 18/39 - loss 0.00000008 - time (sec): 34.98 - samples/sec: 8.23 - lr: 0.000021 - momentum: 0.000000
|
512 |
+
2024-06-24 00:02:49,629 epoch 26 - iter 21/39 - loss 0.00000007 - time (sec): 39.91 - samples/sec: 8.42 - lr: 0.000021 - momentum: 0.000000
|
513 |
+
2024-06-24 00:02:55,530 epoch 26 - iter 24/39 - loss 0.00000012 - time (sec): 45.81 - samples/sec: 8.38 - lr: 0.000020 - momentum: 0.000000
|
514 |
+
2024-06-24 00:03:00,168 epoch 26 - iter 27/39 - loss 0.00000012 - time (sec): 50.45 - samples/sec: 8.56 - lr: 0.000020 - momentum: 0.000000
|
515 |
+
2024-06-24 00:03:05,837 epoch 26 - iter 30/39 - loss 0.00000012 - time (sec): 56.12 - samples/sec: 8.55 - lr: 0.000020 - momentum: 0.000000
|
516 |
+
2024-06-24 00:03:11,122 epoch 26 - iter 33/39 - loss 0.00000011 - time (sec): 61.40 - samples/sec: 8.60 - lr: 0.000020 - momentum: 0.000000
|
517 |
+
2024-06-24 00:03:16,031 epoch 26 - iter 36/39 - loss 0.00000013 - time (sec): 66.31 - samples/sec: 8.69 - lr: 0.000020 - momentum: 0.000000
|
518 |
+
2024-06-24 00:03:21,462 epoch 26 - iter 39/39 - loss 0.00000013 - time (sec): 71.74 - samples/sec: 8.60 - lr: 0.000020 - momentum: 0.000000
|
519 |
+
2024-06-24 00:03:21,462 ----------------------------------------------------------------------------------------------------
|
520 |
+
2024-06-24 00:03:21,462 EPOCH 26 done: loss 0.0000 - lr: 0.000020
|
521 |
+
2024-06-24 00:03:26,369 DEV : loss 1.6954692602157593 - f1-score (micro avg) 0.8947
|
522 |
+
2024-06-24 00:03:27,965 ----------------------------------------------------------------------------------------------------
|
523 |
+
2024-06-24 00:03:32,943 epoch 27 - iter 3/39 - loss 0.00000027 - time (sec): 4.98 - samples/sec: 9.64 - lr: 0.000020 - momentum: 0.000000
|
524 |
+
2024-06-24 00:03:37,755 epoch 27 - iter 6/39 - loss 0.00000040 - time (sec): 9.79 - samples/sec: 9.81 - lr: 0.000020 - momentum: 0.000000
|
525 |
+
2024-06-24 00:03:45,593 epoch 27 - iter 9/39 - loss 0.00000031 - time (sec): 17.63 - samples/sec: 8.17 - lr: 0.000020 - momentum: 0.000000
|
526 |
+
2024-06-24 00:03:50,561 epoch 27 - iter 12/39 - loss 0.00000026 - time (sec): 22.59 - samples/sec: 8.50 - lr: 0.000020 - momentum: 0.000000
|
527 |
+
2024-06-24 00:03:56,047 epoch 27 - iter 15/39 - loss 0.00000021 - time (sec): 28.08 - samples/sec: 8.55 - lr: 0.000019 - momentum: 0.000000
|
528 |
+
2024-06-24 00:04:00,670 epoch 27 - iter 18/39 - loss 0.00000019 - time (sec): 32.70 - samples/sec: 8.81 - lr: 0.000019 - momentum: 0.000000
|
529 |
+
2024-06-24 00:04:05,898 epoch 27 - iter 21/39 - loss 0.00000019 - time (sec): 37.93 - samples/sec: 8.86 - lr: 0.000019 - momentum: 0.000000
|
530 |
+
2024-06-24 00:04:12,467 epoch 27 - iter 24/39 - loss 0.00000017 - time (sec): 44.50 - samples/sec: 8.63 - lr: 0.000019 - momentum: 0.000000
|
531 |
+
2024-06-24 00:04:17,141 epoch 27 - iter 27/39 - loss 0.00000022 - time (sec): 49.17 - samples/sec: 8.79 - lr: 0.000019 - momentum: 0.000000
|
532 |
+
2024-06-24 00:04:23,666 epoch 27 - iter 30/39 - loss 0.00000020 - time (sec): 55.70 - samples/sec: 8.62 - lr: 0.000019 - momentum: 0.000000
|
533 |
+
2024-06-24 00:04:30,842 epoch 27 - iter 33/39 - loss 0.00000019 - time (sec): 62.88 - samples/sec: 8.40 - lr: 0.000019 - momentum: 0.000000
|
534 |
+
2024-06-24 00:04:35,619 epoch 27 - iter 36/39 - loss 0.00000017 - time (sec): 67.65 - samples/sec: 8.51 - lr: 0.000019 - momentum: 0.000000
|
535 |
+
2024-06-24 00:04:40,105 epoch 27 - iter 39/39 - loss 0.00000018 - time (sec): 72.14 - samples/sec: 8.55 - lr: 0.000019 - momentum: 0.000000
|
536 |
+
2024-06-24 00:04:40,106 ----------------------------------------------------------------------------------------------------
|
537 |
+
2024-06-24 00:04:40,106 EPOCH 27 done: loss 0.0000 - lr: 0.000019
|
538 |
+
2024-06-24 00:04:44,881 DEV : loss 1.6968917846679688 - f1-score (micro avg) 0.8947
|
539 |
+
2024-06-24 00:04:46,603 ----------------------------------------------------------------------------------------------------
|
540 |
+
2024-06-24 00:04:51,490 epoch 28 - iter 3/39 - loss 0.00000003 - time (sec): 4.89 - samples/sec: 9.82 - lr: 0.000018 - momentum: 0.000000
|
541 |
+
2024-06-24 00:04:57,535 epoch 28 - iter 6/39 - loss 0.00000011 - time (sec): 10.93 - samples/sec: 8.78 - lr: 0.000018 - momentum: 0.000000
|
542 |
+
2024-06-24 00:05:02,732 epoch 28 - iter 9/39 - loss 0.00000019 - time (sec): 16.13 - samples/sec: 8.93 - lr: 0.000018 - momentum: 0.000000
|
543 |
+
2024-06-24 00:05:09,142 epoch 28 - iter 12/39 - loss 0.00000017 - time (sec): 22.54 - samples/sec: 8.52 - lr: 0.000018 - momentum: 0.000000
|
544 |
+
2024-06-24 00:05:13,949 epoch 28 - iter 15/39 - loss 0.00000014 - time (sec): 27.35 - samples/sec: 8.78 - lr: 0.000018 - momentum: 0.000000
|
545 |
+
2024-06-24 00:05:19,474 epoch 28 - iter 18/39 - loss 0.00000017 - time (sec): 32.87 - samples/sec: 8.76 - lr: 0.000018 - momentum: 0.000000
|
546 |
+
2024-06-24 00:05:26,520 epoch 28 - iter 21/39 - loss 0.00000016 - time (sec): 39.92 - samples/sec: 8.42 - lr: 0.000018 - momentum: 0.000000
|
547 |
+
2024-06-24 00:05:31,232 epoch 28 - iter 24/39 - loss 0.00000014 - time (sec): 44.63 - samples/sec: 8.60 - lr: 0.000018 - momentum: 0.000000
|
548 |
+
2024-06-24 00:05:36,445 epoch 28 - iter 27/39 - loss 0.00000014 - time (sec): 49.84 - samples/sec: 8.67 - lr: 0.000018 - momentum: 0.000000
|
549 |
+
2024-06-24 00:05:42,669 epoch 28 - iter 30/39 - loss 0.00000015 - time (sec): 56.07 - samples/sec: 8.56 - lr: 0.000018 - momentum: 0.000000
|
550 |
+
2024-06-24 00:05:48,598 epoch 28 - iter 33/39 - loss 0.00000016 - time (sec): 61.99 - samples/sec: 8.52 - lr: 0.000017 - momentum: 0.000000
|
551 |
+
2024-06-24 00:05:53,350 epoch 28 - iter 36/39 - loss 0.00000016 - time (sec): 66.75 - samples/sec: 8.63 - lr: 0.000017 - momentum: 0.000000
|
552 |
+
2024-06-24 00:05:58,693 epoch 28 - iter 39/39 - loss 0.00000016 - time (sec): 72.09 - samples/sec: 8.56 - lr: 0.000017 - momentum: 0.000000
|
553 |
+
2024-06-24 00:05:58,694 ----------------------------------------------------------------------------------------------------
|
554 |
+
2024-06-24 00:05:58,694 EPOCH 28 done: loss 0.0000 - lr: 0.000017
|
555 |
+
2024-06-24 00:06:03,494 DEV : loss 1.6977306604385376 - f1-score (micro avg) 0.8947
|
556 |
+
2024-06-24 00:06:05,185 ----------------------------------------------------------------------------------------------------
|
557 |
+
2024-06-24 00:06:10,371 epoch 29 - iter 3/39 - loss 0.00000039 - time (sec): 5.19 - samples/sec: 9.26 - lr: 0.000017 - momentum: 0.000000
|
558 |
+
2024-06-24 00:06:15,181 epoch 29 - iter 6/39 - loss 0.00000024 - time (sec): 10.00 - samples/sec: 9.60 - lr: 0.000017 - momentum: 0.000000
|
559 |
+
2024-06-24 00:06:21,095 epoch 29 - iter 9/39 - loss 0.00000017 - time (sec): 15.91 - samples/sec: 9.05 - lr: 0.000017 - momentum: 0.000000
|
560 |
+
2024-06-24 00:06:26,316 epoch 29 - iter 12/39 - loss 0.00000015 - time (sec): 21.13 - samples/sec: 9.09 - lr: 0.000017 - momentum: 0.000000
|
561 |
+
2024-06-24 00:06:32,910 epoch 29 - iter 15/39 - loss 0.00000013 - time (sec): 27.72 - samples/sec: 8.66 - lr: 0.000017 - momentum: 0.000000
|
562 |
+
2024-06-24 00:06:39,431 epoch 29 - iter 18/39 - loss 0.00000011 - time (sec): 34.25 - samples/sec: 8.41 - lr: 0.000017 - momentum: 0.000000
|
563 |
+
2024-06-24 00:06:44,951 epoch 29 - iter 21/39 - loss 0.00000015 - time (sec): 39.77 - samples/sec: 8.45 - lr: 0.000016 - momentum: 0.000000
|
564 |
+
2024-06-24 00:06:49,789 epoch 29 - iter 24/39 - loss 0.00000058 - time (sec): 44.60 - samples/sec: 8.61 - lr: 0.000016 - momentum: 0.000000
|
565 |
+
2024-06-24 00:06:54,794 epoch 29 - iter 27/39 - loss 0.00000052 - time (sec): 49.61 - samples/sec: 8.71 - lr: 0.000016 - momentum: 0.000000
|
566 |
+
2024-06-24 00:07:00,697 epoch 29 - iter 30/39 - loss 0.00000056 - time (sec): 55.51 - samples/sec: 8.65 - lr: 0.000016 - momentum: 0.000000
|
567 |
+
2024-06-24 00:07:05,632 epoch 29 - iter 33/39 - loss 0.00000052 - time (sec): 60.45 - samples/sec: 8.74 - lr: 0.000016 - momentum: 0.000000
|
568 |
+
2024-06-24 00:07:10,701 epoch 29 - iter 36/39 - loss 0.00000052 - time (sec): 65.52 - samples/sec: 8.79 - lr: 0.000016 - momentum: 0.000000
|
569 |
+
2024-06-24 00:07:17,290 epoch 29 - iter 39/39 - loss 0.00000051 - time (sec): 72.10 - samples/sec: 8.56 - lr: 0.000016 - momentum: 0.000000
|
570 |
+
2024-06-24 00:07:17,290 ----------------------------------------------------------------------------------------------------
|
571 |
+
2024-06-24 00:07:17,290 EPOCH 29 done: loss 0.0000 - lr: 0.000016
|
572 |
+
2024-06-24 00:07:22,120 DEV : loss 1.7071365118026733 - f1-score (micro avg) 0.8947
|
573 |
+
2024-06-24 00:07:23,742 ----------------------------------------------------------------------------------------------------
|
574 |
+
2024-06-24 00:07:29,222 epoch 30 - iter 3/39 - loss 0.00000009 - time (sec): 5.48 - samples/sec: 8.76 - lr: 0.000016 - momentum: 0.000000
|
575 |
+
2024-06-24 00:07:34,286 epoch 30 - iter 6/39 - loss 0.00000006 - time (sec): 10.54 - samples/sec: 9.11 - lr: 0.000016 - momentum: 0.000000
|
576 |
+
2024-06-24 00:07:42,696 epoch 30 - iter 9/39 - loss 0.00000006 - time (sec): 18.95 - samples/sec: 7.60 - lr: 0.000016 - momentum: 0.000000
|
577 |
+
2024-06-24 00:07:48,003 epoch 30 - iter 12/39 - loss 0.00000166 - time (sec): 24.26 - samples/sec: 7.91 - lr: 0.000015 - momentum: 0.000000
|
578 |
+
2024-06-24 00:07:54,844 epoch 30 - iter 15/39 - loss 0.00000134 - time (sec): 31.10 - samples/sec: 7.72 - lr: 0.000015 - momentum: 0.000000
|
579 |
+
2024-06-24 00:08:01,060 epoch 30 - iter 18/39 - loss 0.00000112 - time (sec): 37.32 - samples/sec: 7.72 - lr: 0.000015 - momentum: 0.000000
|
580 |
+
2024-06-24 00:08:05,774 epoch 30 - iter 21/39 - loss 0.00000097 - time (sec): 42.03 - samples/sec: 7.99 - lr: 0.000015 - momentum: 0.000000
|
581 |
+
2024-06-24 00:08:10,765 epoch 30 - iter 24/39 - loss 0.00000086 - time (sec): 47.02 - samples/sec: 8.17 - lr: 0.000015 - momentum: 0.000000
|
582 |
+
2024-06-24 00:08:15,460 epoch 30 - iter 27/39 - loss 0.00000077 - time (sec): 51.72 - samples/sec: 8.35 - lr: 0.000015 - momentum: 0.000000
|
583 |
+
2024-06-24 00:08:20,307 epoch 30 - iter 30/39 - loss 0.00000070 - time (sec): 56.56 - samples/sec: 8.49 - lr: 0.000015 - momentum: 0.000000
|
584 |
+
2024-06-24 00:08:26,918 epoch 30 - iter 33/39 - loss 0.00000070 - time (sec): 63.18 - samples/sec: 8.36 - lr: 0.000015 - momentum: 0.000000
|
585 |
+
2024-06-24 00:08:31,762 epoch 30 - iter 36/39 - loss 0.00000065 - time (sec): 68.02 - samples/sec: 8.47 - lr: 0.000015 - momentum: 0.000000
|
586 |
+
2024-06-24 00:08:35,864 epoch 30 - iter 39/39 - loss 0.00000061 - time (sec): 72.12 - samples/sec: 8.56 - lr: 0.000014 - momentum: 0.000000
|
587 |
+
2024-06-24 00:08:35,864 ----------------------------------------------------------------------------------------------------
|
588 |
+
2024-06-24 00:08:35,865 EPOCH 30 done: loss 0.0000 - lr: 0.000014
|
589 |
+
2024-06-24 00:08:40,738 DEV : loss 1.7021454572677612 - f1-score (micro avg) 0.8947
|
590 |
+
2024-06-24 00:08:42,445 ----------------------------------------------------------------------------------------------------
|
591 |
+
2024-06-24 00:08:48,744 epoch 31 - iter 3/39 - loss 0.00000041 - time (sec): 6.30 - samples/sec: 7.62 - lr: 0.000014 - momentum: 0.000000
|
592 |
+
2024-06-24 00:08:54,327 epoch 31 - iter 6/39 - loss 0.00000190 - time (sec): 11.88 - samples/sec: 8.08 - lr: 0.000014 - momentum: 0.000000
|
593 |
+
2024-06-24 00:09:00,788 epoch 31 - iter 9/39 - loss 0.00000132 - time (sec): 18.34 - samples/sec: 7.85 - lr: 0.000014 - momentum: 0.000000
|
594 |
+
2024-06-24 00:09:05,605 epoch 31 - iter 12/39 - loss 0.00000100 - time (sec): 23.16 - samples/sec: 8.29 - lr: 0.000014 - momentum: 0.000000
|
595 |
+
2024-06-24 00:09:12,328 epoch 31 - iter 15/39 - loss 0.00000092 - time (sec): 29.88 - samples/sec: 8.03 - lr: 0.000014 - momentum: 0.000000
|
596 |
+
2024-06-24 00:09:16,992 epoch 31 - iter 18/39 - loss 0.00000078 - time (sec): 34.55 - samples/sec: 8.34 - lr: 0.000014 - momentum: 0.000000
|
597 |
+
2024-06-24 00:09:21,873 epoch 31 - iter 21/39 - loss 0.00000068 - time (sec): 39.43 - samples/sec: 8.52 - lr: 0.000014 - momentum: 0.000000
|
598 |
+
2024-06-24 00:09:27,853 epoch 31 - iter 24/39 - loss 0.00000063 - time (sec): 45.41 - samples/sec: 8.46 - lr: 0.000014 - momentum: 0.000000
|
599 |
+
2024-06-24 00:09:32,856 epoch 31 - iter 27/39 - loss 0.00000066 - time (sec): 50.41 - samples/sec: 8.57 - lr: 0.000014 - momentum: 0.000000
|
600 |
+
2024-06-24 00:09:37,731 epoch 31 - iter 30/39 - loss 0.00000063 - time (sec): 55.28 - samples/sec: 8.68 - lr: 0.000013 - momentum: 0.000000
|
601 |
+
2024-06-24 00:09:42,690 epoch 31 - iter 33/39 - loss 0.00000059 - time (sec): 60.24 - samples/sec: 8.76 - lr: 0.000013 - momentum: 0.000000
|
602 |
+
2024-06-24 00:09:48,699 epoch 31 - iter 36/39 - loss 0.00000056 - time (sec): 66.25 - samples/sec: 8.69 - lr: 0.000013 - momentum: 0.000000
|
603 |
+
2024-06-24 00:09:54,531 epoch 31 - iter 39/39 - loss 0.00000053 - time (sec): 72.08 - samples/sec: 8.56 - lr: 0.000013 - momentum: 0.000000
|
604 |
+
2024-06-24 00:09:54,532 ----------------------------------------------------------------------------------------------------
|
605 |
+
2024-06-24 00:09:54,532 EPOCH 31 done: loss 0.0000 - lr: 0.000013
|
606 |
+
2024-06-24 00:09:59,362 DEV : loss 1.6980420351028442 - f1-score (micro avg) 0.8947
|
607 |
+
2024-06-24 00:10:00,982 ----------------------------------------------------------------------------------------------------
|
608 |
+
2024-06-24 00:10:07,046 epoch 32 - iter 3/39 - loss 0.00000006 - time (sec): 6.06 - samples/sec: 7.92 - lr: 0.000013 - momentum: 0.000000
|
609 |
+
2024-06-24 00:10:11,803 epoch 32 - iter 6/39 - loss 0.00000005 - time (sec): 10.82 - samples/sec: 8.87 - lr: 0.000013 - momentum: 0.000000
|
610 |
+
2024-06-24 00:10:17,707 epoch 32 - iter 9/39 - loss 0.00000008 - time (sec): 16.72 - samples/sec: 8.61 - lr: 0.000013 - momentum: 0.000000
|
611 |
+
2024-06-24 00:10:22,746 epoch 32 - iter 12/39 - loss 0.00000009 - time (sec): 21.76 - samples/sec: 8.82 - lr: 0.000013 - momentum: 0.000000
|
612 |
+
2024-06-24 00:10:27,450 epoch 32 - iter 15/39 - loss 0.00000008 - time (sec): 26.47 - samples/sec: 9.07 - lr: 0.000013 - momentum: 0.000000
|
613 |
+
2024-06-24 00:10:33,850 epoch 32 - iter 18/39 - loss 0.00000007 - time (sec): 32.87 - samples/sec: 8.76 - lr: 0.000012 - momentum: 0.000000
|
614 |
+
2024-06-24 00:10:39,384 epoch 32 - iter 21/39 - loss 0.00000008 - time (sec): 38.40 - samples/sec: 8.75 - lr: 0.000012 - momentum: 0.000000
|
615 |
+
2024-06-24 00:10:44,361 epoch 32 - iter 24/39 - loss 0.00000011 - time (sec): 43.38 - samples/sec: 8.85 - lr: 0.000012 - momentum: 0.000000
|
616 |
+
2024-06-24 00:10:50,858 epoch 32 - iter 27/39 - loss 0.00000011 - time (sec): 49.87 - samples/sec: 8.66 - lr: 0.000012 - momentum: 0.000000
|
617 |
+
2024-06-24 00:10:55,639 epoch 32 - iter 30/39 - loss 0.00000013 - time (sec): 54.66 - samples/sec: 8.78 - lr: 0.000012 - momentum: 0.000000
|
618 |
+
2024-06-24 00:11:02,190 epoch 32 - iter 33/39 - loss 0.00000012 - time (sec): 61.21 - samples/sec: 8.63 - lr: 0.000012 - momentum: 0.000000
|
619 |
+
2024-06-24 00:11:07,484 epoch 32 - iter 36/39 - loss 0.00000012 - time (sec): 66.50 - samples/sec: 8.66 - lr: 0.000012 - momentum: 0.000000
|
620 |
+
2024-06-24 00:11:13,239 epoch 32 - iter 39/39 - loss 0.00000012 - time (sec): 72.26 - samples/sec: 8.54 - lr: 0.000012 - momentum: 0.000000
|
621 |
+
2024-06-24 00:11:13,240 ----------------------------------------------------------------------------------------------------
|
622 |
+
2024-06-24 00:11:13,240 EPOCH 32 done: loss 0.0000 - lr: 0.000012
|
623 |
+
2024-06-24 00:11:18,078 DEV : loss 1.6986628770828247 - f1-score (micro avg) 0.8947
|
624 |
+
2024-06-24 00:11:19,773 ----------------------------------------------------------------------------------------------------
|
625 |
+
2024-06-24 00:11:24,783 epoch 33 - iter 3/39 - loss 0.00000010 - time (sec): 5.01 - samples/sec: 9.58 - lr: 0.000012 - momentum: 0.000000
|
626 |
+
2024-06-24 00:11:30,965 epoch 33 - iter 6/39 - loss 0.00000014 - time (sec): 11.19 - samples/sec: 8.58 - lr: 0.000011 - momentum: 0.000000
|
627 |
+
2024-06-24 00:11:35,856 epoch 33 - iter 9/39 - loss 0.00000017 - time (sec): 16.08 - samples/sec: 8.95 - lr: 0.000011 - momentum: 0.000000
|
628 |
+
2024-06-24 00:11:40,951 epoch 33 - iter 12/39 - loss 0.00000013 - time (sec): 21.18 - samples/sec: 9.07 - lr: 0.000011 - momentum: 0.000000
|
629 |
+
2024-06-24 00:11:47,505 epoch 33 - iter 15/39 - loss 0.00000011 - time (sec): 27.73 - samples/sec: 8.65 - lr: 0.000011 - momentum: 0.000000
|
630 |
+
2024-06-24 00:11:53,935 epoch 33 - iter 18/39 - loss 0.00000010 - time (sec): 34.16 - samples/sec: 8.43 - lr: 0.000011 - momentum: 0.000000
|
631 |
+
2024-06-24 00:11:59,165 epoch 33 - iter 21/39 - loss 0.00000010 - time (sec): 39.39 - samples/sec: 8.53 - lr: 0.000011 - momentum: 0.000000
|
632 |
+
2024-06-24 00:12:05,219 epoch 33 - iter 24/39 - loss 0.00000012 - time (sec): 45.44 - samples/sec: 8.45 - lr: 0.000011 - momentum: 0.000000
|
633 |
+
2024-06-24 00:12:10,844 epoch 33 - iter 27/39 - loss 0.00000017 - time (sec): 51.07 - samples/sec: 8.46 - lr: 0.000011 - momentum: 0.000000
|
634 |
+
2024-06-24 00:12:15,467 epoch 33 - iter 30/39 - loss 0.00000016 - time (sec): 55.69 - samples/sec: 8.62 - lr: 0.000011 - momentum: 0.000000
|
635 |
+
2024-06-24 00:12:22,880 epoch 33 - iter 33/39 - loss 0.00000015 - time (sec): 63.11 - samples/sec: 8.37 - lr: 0.000011 - momentum: 0.000000
|
636 |
+
2024-06-24 00:12:27,673 epoch 33 - iter 36/39 - loss 0.00000036 - time (sec): 67.90 - samples/sec: 8.48 - lr: 0.000010 - momentum: 0.000000
|
637 |
+
2024-06-24 00:12:31,856 epoch 33 - iter 39/39 - loss 0.00000040 - time (sec): 72.08 - samples/sec: 8.56 - lr: 0.000010 - momentum: 0.000000
|
638 |
+
2024-06-24 00:12:31,856 ----------------------------------------------------------------------------------------------------
|
639 |
+
2024-06-24 00:12:31,856 EPOCH 33 done: loss 0.0000 - lr: 0.000010
|
640 |
+
2024-06-24 00:12:36,744 DEV : loss 1.698986291885376 - f1-score (micro avg) 0.8947
|
641 |
+
2024-06-24 00:12:38,450 ----------------------------------------------------------------------------------------------------
|
642 |
+
2024-06-24 00:12:44,875 epoch 34 - iter 3/39 - loss 0.00000021 - time (sec): 6.42 - samples/sec: 7.47 - lr: 0.000010 - momentum: 0.000000
|
643 |
+
2024-06-24 00:12:49,539 epoch 34 - iter 6/39 - loss 0.00000018 - time (sec): 11.09 - samples/sec: 8.66 - lr: 0.000010 - momentum: 0.000000
|
644 |
+
2024-06-24 00:12:54,424 epoch 34 - iter 9/39 - loss 0.00000081 - time (sec): 15.97 - samples/sec: 9.02 - lr: 0.000010 - momentum: 0.000000
|
645 |
+
2024-06-24 00:13:00,509 epoch 34 - iter 12/39 - loss 0.00000062 - time (sec): 22.06 - samples/sec: 8.70 - lr: 0.000010 - momentum: 0.000000
|
646 |
+
2024-06-24 00:13:06,842 epoch 34 - iter 15/39 - loss 0.00000063 - time (sec): 28.39 - samples/sec: 8.45 - lr: 0.000010 - momentum: 0.000000
|
647 |
+
2024-06-24 00:13:11,704 epoch 34 - iter 18/39 - loss 0.00000054 - time (sec): 33.25 - samples/sec: 8.66 - lr: 0.000010 - momentum: 0.000000
|
648 |
+
2024-06-24 00:13:17,655 epoch 34 - iter 21/39 - loss 0.00000048 - time (sec): 39.20 - samples/sec: 8.57 - lr: 0.000010 - momentum: 0.000000
|
649 |
+
2024-06-24 00:13:22,770 epoch 34 - iter 24/39 - loss 0.00000042 - time (sec): 44.32 - samples/sec: 8.66 - lr: 0.000009 - momentum: 0.000000
|
650 |
+
2024-06-24 00:13:29,291 epoch 34 - iter 27/39 - loss 0.00000043 - time (sec): 50.84 - samples/sec: 8.50 - lr: 0.000009 - momentum: 0.000000
|
651 |
+
2024-06-24 00:13:35,129 epoch 34 - iter 30/39 - loss 0.00000041 - time (sec): 56.68 - samples/sec: 8.47 - lr: 0.000009 - momentum: 0.000000
|
652 |
+
2024-06-24 00:13:40,347 epoch 34 - iter 33/39 - loss 0.00000041 - time (sec): 61.90 - samples/sec: 8.53 - lr: 0.000009 - momentum: 0.000000
|
653 |
+
2024-06-24 00:13:46,088 epoch 34 - iter 36/39 - loss 0.00000038 - time (sec): 67.64 - samples/sec: 8.52 - lr: 0.000009 - momentum: 0.000000
|
654 |
+
2024-06-24 00:13:50,488 epoch 34 - iter 39/39 - loss 0.00000038 - time (sec): 72.04 - samples/sec: 8.57 - lr: 0.000009 - momentum: 0.000000
|
655 |
+
2024-06-24 00:13:50,489 ----------------------------------------------------------------------------------------------------
|
656 |
+
2024-06-24 00:13:50,489 EPOCH 34 done: loss 0.0000 - lr: 0.000009
|
657 |
+
2024-06-24 00:13:55,272 DEV : loss 1.6952990293502808 - f1-score (micro avg) 0.8947
|
658 |
+
2024-06-24 00:13:56,989 ----------------------------------------------------------------------------------------------------
|
659 |
+
2024-06-24 00:14:02,600 epoch 35 - iter 3/39 - loss 0.00000542 - time (sec): 5.61 - samples/sec: 8.56 - lr: 0.000009 - momentum: 0.000000
|
660 |
+
2024-06-24 00:14:07,465 epoch 35 - iter 6/39 - loss 0.00000277 - time (sec): 10.48 - samples/sec: 9.16 - lr: 0.000009 - momentum: 0.000000
|
661 |
+
2024-06-24 00:14:13,116 epoch 35 - iter 9/39 - loss 0.00000187 - time (sec): 16.13 - samples/sec: 8.93 - lr: 0.000009 - momentum: 0.000000
|
662 |
+
2024-06-24 00:14:18,093 epoch 35 - iter 12/39 - loss 0.00000141 - time (sec): 21.10 - samples/sec: 9.10 - lr: 0.000009 - momentum: 0.000000
|
663 |
+
2024-06-24 00:14:22,728 epoch 35 - iter 15/39 - loss 0.00000113 - time (sec): 25.74 - samples/sec: 9.32 - lr: 0.000008 - momentum: 0.000000
|
664 |
+
2024-06-24 00:14:27,596 epoch 35 - iter 18/39 - loss 0.00000100 - time (sec): 30.61 - samples/sec: 9.41 - lr: 0.000008 - momentum: 0.000000
|
665 |
+
2024-06-24 00:14:33,535 epoch 35 - iter 21/39 - loss 0.00000087 - time (sec): 36.54 - samples/sec: 9.19 - lr: 0.000008 - momentum: 0.000000
|
666 |
+
2024-06-24 00:14:41,102 epoch 35 - iter 24/39 - loss 0.00000076 - time (sec): 44.11 - samples/sec: 8.71 - lr: 0.000008 - momentum: 0.000000
|
667 |
+
2024-06-24 00:14:45,906 epoch 35 - iter 27/39 - loss 0.00000068 - time (sec): 48.92 - samples/sec: 8.83 - lr: 0.000008 - momentum: 0.000000
|
668 |
+
2024-06-24 00:14:52,195 epoch 35 - iter 30/39 - loss 0.00000062 - time (sec): 55.20 - samples/sec: 8.69 - lr: 0.000008 - momentum: 0.000000
|
669 |
+
2024-06-24 00:14:58,255 epoch 35 - iter 33/39 - loss 0.00000057 - time (sec): 61.26 - samples/sec: 8.62 - lr: 0.000008 - momentum: 0.000000
|
670 |
+
2024-06-24 00:15:05,341 epoch 35 - iter 36/39 - loss 0.00000052 - time (sec): 68.35 - samples/sec: 8.43 - lr: 0.000008 - momentum: 0.000000
|
671 |
+
2024-06-24 00:15:09,398 epoch 35 - iter 39/39 - loss 0.00000050 - time (sec): 72.41 - samples/sec: 8.52 - lr: 0.000008 - momentum: 0.000000
|
672 |
+
2024-06-24 00:15:09,399 ----------------------------------------------------------------------------------------------------
|
673 |
+
2024-06-24 00:15:09,399 EPOCH 35 done: loss 0.0000 - lr: 0.000008
|
674 |
+
2024-06-24 00:15:14,284 DEV : loss 1.7006655931472778 - f1-score (micro avg) 0.8947
|
675 |
+
2024-06-24 00:15:16,011 ----------------------------------------------------------------------------------------------------
|
676 |
+
2024-06-24 00:15:20,891 epoch 36 - iter 3/39 - loss 0.00000127 - time (sec): 4.88 - samples/sec: 9.84 - lr: 0.000007 - momentum: 0.000000
|
677 |
+
2024-06-24 00:15:26,005 epoch 36 - iter 6/39 - loss 0.00000069 - time (sec): 9.99 - samples/sec: 9.61 - lr: 0.000007 - momentum: 0.000000
|
678 |
+
2024-06-24 00:15:30,853 epoch 36 - iter 9/39 - loss 0.00000053 - time (sec): 14.84 - samples/sec: 9.70 - lr: 0.000007 - momentum: 0.000000
|
679 |
+
2024-06-24 00:15:36,842 epoch 36 - iter 12/39 - loss 0.00000041 - time (sec): 20.83 - samples/sec: 9.22 - lr: 0.000007 - momentum: 0.000000
|
680 |
+
2024-06-24 00:15:44,294 epoch 36 - iter 15/39 - loss 0.00000037 - time (sec): 28.28 - samples/sec: 8.49 - lr: 0.000007 - momentum: 0.000000
|
681 |
+
2024-06-24 00:15:49,327 epoch 36 - iter 18/39 - loss 0.00000033 - time (sec): 33.32 - samples/sec: 8.64 - lr: 0.000007 - momentum: 0.000000
|
682 |
+
2024-06-24 00:15:54,236 epoch 36 - iter 21/39 - loss 0.00000028 - time (sec): 38.22 - samples/sec: 8.79 - lr: 0.000007 - momentum: 0.000000
|
683 |
+
2024-06-24 00:16:00,296 epoch 36 - iter 24/39 - loss 0.00000026 - time (sec): 44.28 - samples/sec: 8.67 - lr: 0.000007 - momentum: 0.000000
|
684 |
+
2024-06-24 00:16:06,692 epoch 36 - iter 27/39 - loss 0.00000026 - time (sec): 50.68 - samples/sec: 8.52 - lr: 0.000007 - momentum: 0.000000
|
685 |
+
2024-06-24 00:16:11,897 epoch 36 - iter 30/39 - loss 0.00000024 - time (sec): 55.89 - samples/sec: 8.59 - lr: 0.000007 - momentum: 0.000000
|
686 |
+
2024-06-24 00:16:17,672 epoch 36 - iter 33/39 - loss 0.00000022 - time (sec): 61.66 - samples/sec: 8.56 - lr: 0.000006 - momentum: 0.000000
|
687 |
+
2024-06-24 00:16:23,749 epoch 36 - iter 36/39 - loss 0.00000021 - time (sec): 67.74 - samples/sec: 8.50 - lr: 0.000006 - momentum: 0.000000
|
688 |
+
2024-06-24 00:16:28,163 epoch 36 - iter 39/39 - loss 0.00000020 - time (sec): 72.15 - samples/sec: 8.55 - lr: 0.000006 - momentum: 0.000000
|
689 |
+
2024-06-24 00:16:28,164 ----------------------------------------------------------------------------------------------------
|
690 |
+
2024-06-24 00:16:28,164 EPOCH 36 done: loss 0.0000 - lr: 0.000006
|
691 |
+
2024-06-24 00:16:32,993 DEV : loss 1.7021197080612183 - f1-score (micro avg) 0.8947
|
692 |
+
2024-06-24 00:16:34,685 ----------------------------------------------------------------------------------------------------
|
693 |
+
2024-06-24 00:16:40,901 epoch 37 - iter 3/39 - loss 0.00000003 - time (sec): 6.22 - samples/sec: 7.72 - lr: 0.000006 - momentum: 0.000000
|
694 |
+
2024-06-24 00:16:45,576 epoch 37 - iter 6/39 - loss 0.00000003 - time (sec): 10.89 - samples/sec: 8.81 - lr: 0.000006 - momentum: 0.000000
|
695 |
+
2024-06-24 00:16:50,468 epoch 37 - iter 9/39 - loss 0.00000009 - time (sec): 15.78 - samples/sec: 9.12 - lr: 0.000006 - momentum: 0.000000
|
696 |
+
2024-06-24 00:16:55,105 epoch 37 - iter 12/39 - loss 0.00000017 - time (sec): 20.42 - samples/sec: 9.40 - lr: 0.000006 - momentum: 0.000000
|
697 |
+
2024-06-24 00:17:00,241 epoch 37 - iter 15/39 - loss 0.00000014 - time (sec): 25.55 - samples/sec: 9.39 - lr: 0.000006 - momentum: 0.000000
|
698 |
+
2024-06-24 00:17:05,538 epoch 37 - iter 18/39 - loss 0.00000013 - time (sec): 30.85 - samples/sec: 9.33 - lr: 0.000006 - momentum: 0.000000
|
699 |
+
2024-06-24 00:17:10,431 epoch 37 - iter 21/39 - loss 0.00000012 - time (sec): 35.75 - samples/sec: 9.40 - lr: 0.000005 - momentum: 0.000000
|
700 |
+
2024-06-24 00:17:15,323 epoch 37 - iter 24/39 - loss 0.00000011 - time (sec): 40.64 - samples/sec: 9.45 - lr: 0.000005 - momentum: 0.000000
|
701 |
+
2024-06-24 00:17:20,272 epoch 37 - iter 27/39 - loss 0.00000015 - time (sec): 45.59 - samples/sec: 9.48 - lr: 0.000005 - momentum: 0.000000
|
702 |
+
2024-06-24 00:17:25,225 epoch 37 - iter 30/39 - loss 0.00000014 - time (sec): 50.54 - samples/sec: 9.50 - lr: 0.000005 - momentum: 0.000000
|
703 |
+
2024-06-24 00:17:34,109 epoch 37 - iter 33/39 - loss 0.00000014 - time (sec): 59.42 - samples/sec: 8.89 - lr: 0.000005 - momentum: 0.000000
|
704 |
+
2024-06-24 00:17:41,163 epoch 37 - iter 36/39 - loss 0.00000014 - time (sec): 66.48 - samples/sec: 8.66 - lr: 0.000005 - momentum: 0.000000
|
705 |
+
2024-06-24 00:17:47,235 epoch 37 - iter 39/39 - loss 0.00000014 - time (sec): 72.55 - samples/sec: 8.50 - lr: 0.000005 - momentum: 0.000000
|
706 |
+
2024-06-24 00:17:47,236 ----------------------------------------------------------------------------------------------------
|
707 |
+
2024-06-24 00:17:47,236 EPOCH 37 done: loss 0.0000 - lr: 0.000005
|
708 |
+
2024-06-24 00:17:51,949 DEV : loss 1.702373743057251 - f1-score (micro avg) 0.8947
|
709 |
+
2024-06-24 00:17:53,691 ----------------------------------------------------------------------------------------------------
|
710 |
+
2024-06-24 00:17:59,399 epoch 38 - iter 3/39 - loss 0.00000261 - time (sec): 5.71 - samples/sec: 8.41 - lr: 0.000005 - momentum: 0.000000
|
711 |
+
2024-06-24 00:18:04,191 epoch 38 - iter 6/39 - loss 0.00000132 - time (sec): 10.50 - samples/sec: 9.14 - lr: 0.000005 - momentum: 0.000000
|
712 |
+
2024-06-24 00:18:10,279 epoch 38 - iter 9/39 - loss 0.00000089 - time (sec): 16.59 - samples/sec: 8.68 - lr: 0.000005 - momentum: 0.000000
|
713 |
+
2024-06-24 00:18:15,059 epoch 38 - iter 12/39 - loss 0.00000069 - time (sec): 21.37 - samples/sec: 8.99 - lr: 0.000004 - momentum: 0.000000
|
714 |
+
2024-06-24 00:18:22,574 epoch 38 - iter 15/39 - loss 0.00000059 - time (sec): 28.88 - samples/sec: 8.31 - lr: 0.000004 - momentum: 0.000000
|
715 |
+
2024-06-24 00:18:27,280 epoch 38 - iter 18/39 - loss 0.00000050 - time (sec): 33.59 - samples/sec: 8.57 - lr: 0.000004 - momentum: 0.000000
|
716 |
+
2024-06-24 00:18:34,816 epoch 38 - iter 21/39 - loss 0.00000048 - time (sec): 41.12 - samples/sec: 8.17 - lr: 0.000004 - momentum: 0.000000
|
717 |
+
2024-06-24 00:18:39,469 epoch 38 - iter 24/39 - loss 0.00000042 - time (sec): 45.78 - samples/sec: 8.39 - lr: 0.000004 - momentum: 0.000000
|
718 |
+
2024-06-24 00:18:45,653 epoch 38 - iter 27/39 - loss 0.00000041 - time (sec): 51.96 - samples/sec: 8.31 - lr: 0.000004 - momentum: 0.000000
|
719 |
+
2024-06-24 00:18:50,547 epoch 38 - iter 30/39 - loss 0.00000037 - time (sec): 56.86 - samples/sec: 8.44 - lr: 0.000004 - momentum: 0.000000
|
720 |
+
2024-06-24 00:18:56,666 epoch 38 - iter 33/39 - loss 0.00000035 - time (sec): 62.97 - samples/sec: 8.38 - lr: 0.000004 - momentum: 0.000000
|
721 |
+
2024-06-24 00:19:01,975 epoch 38 - iter 36/39 - loss 0.00000032 - time (sec): 68.28 - samples/sec: 8.44 - lr: 0.000004 - momentum: 0.000000
|
722 |
+
2024-06-24 00:19:06,188 epoch 38 - iter 39/39 - loss 0.00000030 - time (sec): 72.50 - samples/sec: 8.51 - lr: 0.000003 - momentum: 0.000000
|
723 |
+
2024-06-24 00:19:06,188 ----------------------------------------------------------------------------------------------------
|
724 |
+
2024-06-24 00:19:06,188 EPOCH 38 done: loss 0.0000 - lr: 0.000003
|
725 |
+
2024-06-24 00:19:10,986 DEV : loss 1.7031772136688232 - f1-score (micro avg) 0.8947
|
726 |
+
2024-06-24 00:19:12,580 ----------------------------------------------------------------------------------------------------
|
727 |
+
2024-06-24 00:19:17,415 epoch 39 - iter 3/39 - loss 0.00000003 - time (sec): 4.83 - samples/sec: 9.93 - lr: 0.000003 - momentum: 0.000000
|
728 |
+
2024-06-24 00:19:22,308 epoch 39 - iter 6/39 - loss 0.00000006 - time (sec): 9.73 - samples/sec: 9.87 - lr: 0.000003 - momentum: 0.000000
|
729 |
+
2024-06-24 00:19:28,668 epoch 39 - iter 9/39 - loss 0.00000026 - time (sec): 16.09 - samples/sec: 8.95 - lr: 0.000003 - momentum: 0.000000
|
730 |
+
2024-06-24 00:19:37,048 epoch 39 - iter 12/39 - loss 0.00000021 - time (sec): 24.47 - samples/sec: 7.85 - lr: 0.000003 - momentum: 0.000000
|
731 |
+
2024-06-24 00:19:44,240 epoch 39 - iter 15/39 - loss 0.00000019 - time (sec): 31.66 - samples/sec: 7.58 - lr: 0.000003 - momentum: 0.000000
|
732 |
+
2024-06-24 00:19:49,264 epoch 39 - iter 18/39 - loss 0.00000017 - time (sec): 36.68 - samples/sec: 7.85 - lr: 0.000003 - momentum: 0.000000
|
733 |
+
2024-06-24 00:19:54,357 epoch 39 - iter 21/39 - loss 0.00000015 - time (sec): 41.78 - samples/sec: 8.04 - lr: 0.000003 - momentum: 0.000000
|
734 |
+
2024-06-24 00:19:59,066 epoch 39 - iter 24/39 - loss 0.00000017 - time (sec): 46.49 - samples/sec: 8.26 - lr: 0.000003 - momentum: 0.000000
|
735 |
+
2024-06-24 00:20:03,935 epoch 39 - iter 27/39 - loss 0.00000039 - time (sec): 51.35 - samples/sec: 8.41 - lr: 0.000003 - momentum: 0.000000
|
736 |
+
2024-06-24 00:20:10,405 epoch 39 - iter 30/39 - loss 0.00000036 - time (sec): 57.82 - samples/sec: 8.30 - lr: 0.000002 - momentum: 0.000000
|
737 |
+
2024-06-24 00:20:15,268 epoch 39 - iter 33/39 - loss 0.00000033 - time (sec): 62.69 - samples/sec: 8.42 - lr: 0.000002 - momentum: 0.000000
|
738 |
+
2024-06-24 00:20:20,926 epoch 39 - iter 36/39 - loss 0.00000034 - time (sec): 68.35 - samples/sec: 8.43 - lr: 0.000002 - momentum: 0.000000
|
739 |
+
2024-06-24 00:20:25,040 epoch 39 - iter 39/39 - loss 0.00000032 - time (sec): 72.46 - samples/sec: 8.52 - lr: 0.000002 - momentum: 0.000000
|
740 |
+
2024-06-24 00:20:25,041 ----------------------------------------------------------------------------------------------------
|
741 |
+
2024-06-24 00:20:25,041 EPOCH 39 done: loss 0.0000 - lr: 0.000002
|
742 |
+
2024-06-24 00:20:29,851 DEV : loss 1.7041176557540894 - f1-score (micro avg) 0.8947
|
743 |
+
2024-06-24 00:20:31,571 ----------------------------------------------------------------------------------------------------
|
744 |
+
2024-06-24 00:20:36,431 epoch 40 - iter 3/39 - loss 0.00000288 - time (sec): 4.86 - samples/sec: 9.88 - lr: 0.000002 - momentum: 0.000000
|
745 |
+
2024-06-24 00:20:43,066 epoch 40 - iter 6/39 - loss 0.00000146 - time (sec): 11.49 - samples/sec: 8.35 - lr: 0.000002 - momentum: 0.000000
|
746 |
+
2024-06-24 00:20:48,875 epoch 40 - iter 9/39 - loss 0.00000100 - time (sec): 17.30 - samples/sec: 8.32 - lr: 0.000002 - momentum: 0.000000
|
747 |
+
2024-06-24 00:20:55,648 epoch 40 - iter 12/39 - loss 0.00000078 - time (sec): 24.08 - samples/sec: 7.97 - lr: 0.000002 - momentum: 0.000000
|
748 |
+
2024-06-24 00:21:00,428 epoch 40 - iter 15/39 - loss 0.00000064 - time (sec): 28.86 - samples/sec: 8.32 - lr: 0.000002 - momentum: 0.000000
|
749 |
+
2024-06-24 00:21:05,272 epoch 40 - iter 18/39 - loss 0.00000054 - time (sec): 33.70 - samples/sec: 8.55 - lr: 0.000001 - momentum: 0.000000
|
750 |
+
2024-06-24 00:21:11,236 epoch 40 - iter 21/39 - loss 0.00000047 - time (sec): 39.66 - samples/sec: 8.47 - lr: 0.000001 - momentum: 0.000000
|
751 |
+
2024-06-24 00:21:17,478 epoch 40 - iter 24/39 - loss 0.00000042 - time (sec): 45.91 - samples/sec: 8.37 - lr: 0.000001 - momentum: 0.000000
|
752 |
+
2024-06-24 00:21:22,265 epoch 40 - iter 27/39 - loss 0.00000037 - time (sec): 50.69 - samples/sec: 8.52 - lr: 0.000001 - momentum: 0.000000
|
753 |
+
2024-06-24 00:21:27,415 epoch 40 - iter 30/39 - loss 0.00000034 - time (sec): 55.84 - samples/sec: 8.60 - lr: 0.000001 - momentum: 0.000000
|
754 |
+
2024-06-24 00:21:32,200 epoch 40 - iter 33/39 - loss 0.00000032 - time (sec): 60.63 - samples/sec: 8.71 - lr: 0.000001 - momentum: 0.000000
|
755 |
+
2024-06-24 00:21:38,217 epoch 40 - iter 36/39 - loss 0.00000031 - time (sec): 66.64 - samples/sec: 8.64 - lr: 0.000001 - momentum: 0.000000
|
756 |
+
2024-06-24 00:21:44,225 epoch 40 - iter 39/39 - loss 0.00000030 - time (sec): 72.65 - samples/sec: 8.49 - lr: 0.000001 - momentum: 0.000000
|
757 |
+
2024-06-24 00:21:44,226 ----------------------------------------------------------------------------------------------------
|
758 |
+
2024-06-24 00:21:44,226 EPOCH 40 done: loss 0.0000 - lr: 0.000001
|
759 |
+
2024-06-24 00:21:48,944 DEV : loss 1.7045665979385376 - f1-score (micro avg) 0.8947
|
760 |
+
2024-06-24 00:21:51,063 ----------------------------------------------------------------------------------------------------
|
761 |
+
2024-06-24 00:21:51,064 Testing using last state of model ...
|
762 |
+
2024-06-24 00:21:56,953
|
763 |
+
Results:
|
764 |
+
- F-score (micro) 0.9367
|
765 |
+
- F-score (macro) 0.9177
|
766 |
+
- Accuracy 0.9367
|
767 |
+
|
768 |
+
By class:
|
769 |
+
precision recall f1-score support
|
770 |
+
|
771 |
+
negative 0.9655 0.9492 0.9573 59
|
772 |
+
positive 0.8571 0.9000 0.8780 20
|
773 |
+
|
774 |
+
accuracy 0.9367 79
|
775 |
+
macro avg 0.9113 0.9246 0.9177 79
|
776 |
+
weighted avg 0.9381 0.9367 0.9372 79
|
777 |
+
|
778 |
+
2024-06-24 00:21:56,954 ----------------------------------------------------------------------------------------------------
|