--- license: mit pipeline_tag: image-classification tags: - image-classification - pytorch - dog-breed - mobilenet - computer-vision datasets: - custom library_name: transformers --- # Dog Breed Classifier This is a MobileNetV2 model fine-tuned for dog breed classification with 120 breed classes. ## Supported Breeds - Chihuahua - Japanese Spaniel - Maltese Dog - Pekinese - Shih-Tzu - Blenheim Spaniel - Papillon - Toy Terrier - Rhodesian Ridgeback - Afghan Hound - ... and 110 more breeds ## Model Details - **Architecture**: MobileNetV2 with custom classifier - **Input Size**: 224x224 pixels - **Number of Classes**: 120 - **Framework**: PyTorch ## Usage ### Via Hugging Face Inference API ```python import requests API_URL = "https://api-inference.huggingface.co/models/valentinocc/dog-breed-classifier" headers = {"Authorization": "Bearer YOUR_HF_TOKEN"} def query(filename): with open(filename, "rb") as f: data = f.read() response = requests.post(API_URL, headers=headers, data=data) return response.json() # Predict dog breed output = query("dog_image.jpg") print(f"Predicted breed: {output[0]['label']} ({output[0]['score']:.2%} confidence)") ``` ### Django Integration ```python from utils.huggingface_client import HuggingFaceClient hf_client = HuggingFaceClient() result = hf_client.classify_image(image_file, "valentinocc/dog-breed-classifier") ``` ## Training Details This model was trained on a custom dataset of dog breed images using transfer learning on MobileNetV2. The model achieves good performance across 120 different dog breeds. ## Model Performance - Input: RGB images, 224x224 pixels - Output: Probability distribution over 120 dog breeds - Architecture: MobileNetV2 backbone + custom classifier