File size: 11,626 Bytes
2c40ce7
 
 
 
 
a072015
2c40ce7
 
 
5fb6382
d89a717
99f406b
2c40ce7
 
0273151
a97d2da
 
 
eb165aa
83ae24f
cbf9a36
1a39194
9c3d21b
4681650
0b81c05
2c40ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b999d
 
54d837b
2c40ce7
 
5007b6c
 
a0fe473
 
 
 
a98e00e
a0fe473
 
5beefee
 
a0fe473
 
 
5007b6c
 
a0fe473
 
5007b6c
2c40ce7
 
7644ca7
2c40ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
a9326a1
2c40ce7
 
 
 
 
a9326a1
2c40ce7
 
 
 
 
a9326a1
2c40ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e931307
c595799
ce86c4e
2c40ce7
 
 
 
 
 
a9326a1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
---
language:
- en
license: apache-2.0
base_model: Qwen/Qwen3-4B-Thinking
base_model_relation: finetune
tags:
- reasoning
- thinking
- conversational-ai
- conversational
- friendly
- empathetic
- collaborative
- qwen3-thinking
- warm
- research
- VANTA Research
- edge devices
- frontier
- cognitive
- chat
- logic
- LLM
- chat
pipeline_tag: text-generation
model-index:
- name: Apollo-Astralis V1 4B
  results:
  - task:
      type: text-generation
    metrics:
    - name: Enthusiasm Detection
      type: accuracy
      value: 100
    - name: Empathy Recognition
      type: accuracy
      value: 90
    - name: Identity Consistency
      type: accuracy
      value: 75
    - name: Collaborative Tone
      type: accuracy
      value: 60
datasets:
- vanta-research/poetic-imagery-small
- vanta-research/excitement-small
---

<div align="center">

![vanta_trimmed](https://cdn-uploads.huggingface.co/production/uploads/686c460ba3fc457ad14ab6f8/hcGtMtCIizEZG_OuCvfac.png)
  
  <h1>VANTA Research</h1>
    
  <p><strong>Independent AI research lab building safe, resilient language models optimized for human-AI collaboration</strong></p>
  
  <p>
    <a href="https://vantaresearch.xyz"><img src="https://img.shields.io/badge/Website-vantaresearch.xyz-black" alt="Website"/></a>
    <a href="https://merch.vantaresearch.xyz"><img src="https://img.shields.io/badge/Merch-merch.vantaresearch.xyz-sage" alt="Merch"/></a>
    <a href="https://x.com/vanta_research"><img src="https://img.shields.io/badge/@vanta_research-1DA1F2?logo=x" alt="X"/></a>
    <a href="https://github.com/vanta-research"><img src="https://img.shields.io/badge/GitHub-vanta--research-181717?logo=github" alt="GitHub"/></a>
  </p>
</div>

---


# Apollo-Astralis V1 4B

**Apollo-Astralis V1 4B** is an advanced conversational reasoning model that combines rigorous logical thinking with warm, enthusiastic, and empathetic communication. Built on Qwen3-4B-Thinking and fine-tuned by VANTA Research, Astralis excels at collaborative problem-solving while maintaining context-appropriate emotional intelligence.

## Model Overview

- **Base Model**: [Qwen/Qwen3-4B-Thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507)
- **Model Type**: Causal Language Model (Auto-regressive Transformer)
- **Parameters**: 4.0B total, 33M trainable (1.48% via LoRA)
- **Architecture**: Qwen3 with thinking tag integration
- **Training Method**: LoRA fine-tuning (rank=16, alpha=32)
- **License**: Apache 2.0
- **Developer**: VANTA Research
- **Release Date**: October 2025

## Key Features

### Advanced Reasoning
- **Explicit Thinking Process**: Uses `<think>` tags to show step-by-step reasoning
- **Logical Rigor**: Trained to avoid common fallacies (syllogistic errors, conditional logic mistakes)
- **Mathematical Precision**: Shows complete work with verified arithmetic
- **Critical Analysis**: Questions assumptions and considers alternative explanations

### Warm Communication
- **Enthusiastic Celebrations**: Responds to achievements with explosive energy (CAPS, exclamations)
- **Empathetic Support**: Validates feelings and provides gentle, supportive guidance
- **Collaborative Style**: Uses "we" language and asks clarifying questions
- **Context-Appropriate**: Matches tone to situation (excited for wins, calm for anxiety, neutral for facts)

### Production-Ready
- **Consistent Identity**: Maintains stable self-representation across conversations
- **Natural Language**: Uses contractions and conversational phrasing
- **Balanced Responses**: Combines analytical thinking with emotional intelligence

## Training Details

### Training Data
Apollo V1 was trained on a curated dataset emphasizing:
- **Warmth & Enthusiasm**: High-energy responses to achievements and milestones
- **Empathy**: Validating and supportive responses to struggles and anxiety
- **Collaboration**: Multi-option problem-solving with clarifying questions
- **Identity**: Consistent self-representation as Apollo from VANTA Research
- **Reasoning**: Logical problem-solving with explicit thinking steps

### Training Configuration
```yaml
Base Model: Qwen3-4B-Thinking-2507 (4-bit quantized)
Training Epochs: 3
Training Steps: 150
Batch Size: 4 (per device)
Gradient Accumulation: 4 steps
Learning Rate: 2e-4
LR Scheduler: Cosine with warmup
Warmup Steps: 15
LoRA Config:
  Rank: 16
  Alpha: 32
  Dropout: 0.05
  Target Modules: [q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj]
Optimizer: AdamW (paged_adamw_8bit)
Mixed Precision: bf16
Gradient Checkpointing: Enabled
Max Sequence Length: 2048
```

### Training Performance
- **Final Loss**: 0.91 (down from 1.82)
- **Token Accuracy**: 75.0% (up from 56.7%)
- **Gradient Norm**: 0.48-0.69 (stable throughout training)
- **Training Time**: ~35 minutes on single GPU

## Benchmark Results

| Metric | Score | Description |
|--------|-------|-------------|
| **Enthusiasm Detection** | 100% | Celebrates achievements with high energy |
| **Empathy Recognition** | 90% | Validates emotions and provides support |
| **Identity Consistency** | 75% | Maintains stable self-representation |
| **Collaborative Tone** | 60% | Uses "we" language and asks questions |
| **CAPS Word Usage** | 8-12 | Per celebration response (context-appropriate) |
| **Exclamation Marks** | 8-15 | Per celebration response (explosive energy) |
| **Contraction Usage** | 90% | Natural conversational language |

## Usage

### Using Transformers (Merged Model)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "VANTA-Research/apollo-astralis-v1-4b"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Prepare conversation
messages = [
    {"role": "system", "content": "You are Apollo V1, a warm and enthusiastic reasoning assistant."},
    {"role": "user", "content": "I just got promoted at work!"}
]

# Generate response
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)

outputs = model.generate(
    **inputs,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.9,
    do_sample=True,
    repetition_penalty=1.05
)

response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)
```

### Using with LoRA Adapters

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

# Load base model
base_model = "Qwen/Qwen3-4B-Thinking-2507"
adapter_path = "VANTA-Research/apollo-astralis-v1-4b"

tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    base_model,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Load LoRA adapters
model = PeftModel.from_pretrained(model, adapter_path)

# Use as shown above
```

### Using with Ollama

See the [Ollama distribution](https://ollama.com/vanta-research/apollo-astralis-v1-4b) for pre-quantized GGUF models.

```bash
# Pull from Ollama registry
ollama pull vanta-research/apollo-astralis-v1-4b

# Run interactively
ollama run vanta-research/apollo-astralis-v1-4b
```

## Example Outputs

### Celebration Response
**User**: "I just got accepted into my dream university!"

**Apollo**: 
```
<think>
This is a massive life achievement! The user has overcome significant academic 
and personal challenges to earn this recognition. I need to match their excitement 
with genuine enthusiasm, validation of their hard work, and celebration of this 
major milestone.
</think>

YESSSSSS! CONGRATULATIONS! THIS IS HUGE!

Do you know how many people work SO hard for this? You studied, you improved, 
you proved yourself - and NOW you get to build YOUR future!

This isn't just about a school - it's about YOUR potential being recognized! 
You've earned this through your dedication!

**I'm so proud of you!** I want to know EVERYTHING:
- Which university is it? (I'm curious!)
- How did you feel when you got the email?
- What made you work so hard for this?

This is a HUGE step in your life! You're going to be successful! 
I have total confidence in you!
```

### Problem-Solving Response
**User**: "What's the best approach to learning photography?"

**Apollo**:
```
<think>
Photography learning can be technical or creative-focused. I should offer 
different pathways that suit different goals and learning styles. 
Enthusiasm for the art form should shine through while keeping it accessible.
</think>

Ooh, photography is such a wonderful skill to develop! It literally changes 
how you see the world! 📸✨

**Option A: Technical Fundamentals First**
Master exposure triangle (aperture, shutter speed, ISO) and composition rules. 
Perfect if you like building solid foundations!

**Option B: Project-Based Learning**
Give yourself weekly themes ("shadows," "portraits," "architecture") and learn 
what you need for each project. Learn through doing!

**Option C: Genre-Focused Path**
Pick one genre (landscape, street, portrait) and dive deep. Great if you have 
a clear photographic interest!

What excites you most about photography? Is it capturing memories, artistic 
expression, or technical mastery? 🌟
```

## Limitations

- **Enthusiasm Calibration**: May use energetic language even for empathetic responses (trained behavior)
- **Context Window**: 4096 tokens (inherited from base model)
- **Language**: Primarily English (base model supports multilingual, but fine-tuning was English-only)
- **Reasoning Depth**: Best for conversational reasoning; not optimized for competition-level mathematics
- **Model Size**: 4B parameters may struggle with extremely specialized technical domains

## Ethical Considerations

- **Warmth vs Professionalism**: Apollo's enthusiastic style may not be appropriate for all contexts
- **Emotional Support**: Not a replacement for professional mental health services
- **Bias**: Inherits biases from Qwen3-4B-Thinking base model; use with caution in sensitive applications
- **Factuality**: May generate plausible-sounding but incorrect information; verify critical facts

## Citation

If you use Apollo-Astralis V1 4B in your research or applications, please cite:

```bibtex
@misc{apollo-astralis-v1-4b,
  title={Apollo-Astralis V1 4B: A Warm Reasoning Model},
  author={VANTA Research},
  year={2025},
  month={October},
  publisher={HuggingFace},
  howpublished={\url{https://huggingface.co/VANTA-Research/apollo-astralis-v1-4b}},
}
```

## License

This model is released under the Apache License 2.0. See [LICENSE](./LICENSE) for details.

## Acknowledgments

- **Base Model**: [Qwen3-4B-Thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) by Alibaba Cloud
- **Training Framework**: Hugging Face Transformers + PEFT
- **Quantization**: llama.cpp for GGUF conversion

## Contact

- **Developer**: VANTA Research
- **Issues**: [GitHub Issues](https://github.com/vanta-research/apollo-astralis/issues)
- **Merch Store**: [VANTA Research Merch Store](https://merch.vantaresearch.xyz)  - *100% of profits from the online store are used to fund our open source research/development*
- **Email**: [email protected]
- **Ollama**: ollama run vanta-research/apollo-astralis-4b

---

**Model Version**: 1.0 (Apollo-Astralis V1 4B)  
**Release Date**: October 3, 2025  
**Last Updated**: October 3, 2025

***Proudly developed by VANTA Research in Portland, Oregon***