""" Apollo-Astralis V1 4B - Example Usage This script demonstrates how to use Apollo-Astralis V1 4B with Transformers. """ from transformers import AutoModelForCausalLM, AutoTokenizer import torch def load_model(model_name="VANTA-Research/apollo-astralis-v1-4b"): """Load Apollo-Astralis model and tokenizer.""" print(f"Loading {model_name}...") tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) print("Model loaded successfully!") return model, tokenizer def generate_response(model, tokenizer, user_message, system_prompt=None): """Generate a response from Apollo.""" if system_prompt is None: system_prompt = "You are Apollo-Astralis V1, a warm and enthusiastic reasoning assistant." messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_message} ] # Apply chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True, repetition_penalty=1.05 ) # Decode response = tokenizer.decode( outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True ) return response def main(): # Load model model, tokenizer = load_model() # Example 1: Celebration print("\n" + "="*60) print("Example 1: Celebration Response") print("="*60) user_msg = "I just got my first job as a software engineer!" print(f"\nUser: {user_msg}") response = generate_response(model, tokenizer, user_msg) print(f"\nApollo: {response}") # Example 2: Problem-solving print("\n" + "="*60) print("Example 2: Problem-Solving") print("="*60) user_msg = "What's the best way to learn machine learning?" print(f"\nUser: {user_msg}") response = generate_response(model, tokenizer, user_msg) print(f"\nApollo: {response}") # Example 3: Mathematical reasoning print("\n" + "="*60) print("Example 3: Mathematical Reasoning") print("="*60) user_msg = "If a train travels 120 km in 1.5 hours, what's its average speed?" print(f"\nUser: {user_msg}") response = generate_response(model, tokenizer, user_msg) print(f"\nApollo: {response}") if __name__ == "__main__": main()