Upload benchmark_load_lora.py
Browse files- benchmark_load_lora.py +64 -0
benchmark_load_lora.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import time
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import FluxPipeline
|
| 6 |
+
|
| 7 |
+
def benchmark_load_lora(
|
| 8 |
+
base_model: str,
|
| 9 |
+
lora_source: str,
|
| 10 |
+
weight_name: str = None,
|
| 11 |
+
adapter_name: str = None,
|
| 12 |
+
dtype = torch.bfloat16,
|
| 13 |
+
runs: int = 3,
|
| 14 |
+
):
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
print(f"Benchmarking on device {device}, torch.cuda.device_count()={torch.cuda.device_count()}.")
|
| 17 |
+
|
| 18 |
+
print(f"1/4. Loading base Flux.1-dev model …")
|
| 19 |
+
t0 = time.time()
|
| 20 |
+
pipe = FluxPipeline.from_pretrained(base_model, torch_dtype=dtype, use_safetensors=True)
|
| 21 |
+
base_load_s = time.time() - t0
|
| 22 |
+
print(f" Base model loaded in {base_load_s:.3f} s")
|
| 23 |
+
|
| 24 |
+
print("2/4. Moving pipeline to GPU …")
|
| 25 |
+
t1 = time.time()
|
| 26 |
+
pipe = pipe.to(device)
|
| 27 |
+
torch.cuda.synchronize(device)
|
| 28 |
+
move_s = time.time() - t1
|
| 29 |
+
print(f" to('cuda') took {move_s:.3f} s")
|
| 30 |
+
|
| 31 |
+
# Warm‑up LoRA caching (optional)
|
| 32 |
+
for i in range(runs):
|
| 33 |
+
print(f"3.{i+1}/4. Running load_lora_weights (run {i+1}/{runs}) …")
|
| 34 |
+
start = time.time()
|
| 35 |
+
adapter_name = "lora"
|
| 36 |
+
pipe.load_lora_weights(lora_source, adapter_name=adapter_name)
|
| 37 |
+
torch.cuda.synchronize(device)
|
| 38 |
+
duration = time.time() - start
|
| 39 |
+
print(f" → run {i+1}: load_lora_weights took {duration:.3f} s")
|
| 40 |
+
|
| 41 |
+
if i < runs - 1:
|
| 42 |
+
print(" Unloading LoRA …")
|
| 43 |
+
pipe.unload_lora_weights(reset_to_overwritten_params=True)
|
| 44 |
+
torch.cuda.synchronize(device)
|
| 45 |
+
|
| 46 |
+
print("All runs complete.")
|
| 47 |
+
avg = duration # last run
|
| 48 |
+
print(f"☆ Final run time: {avg:.3f} s")
|
| 49 |
+
print(f"― average over {runs} runs ≈ {avg:.3f} s")
|
| 50 |
+
|
| 51 |
+
if __name__ == "__main__":
|
| 52 |
+
parser = argparse.ArgumentParser(
|
| 53 |
+
description="Benchmark Flux.1‑dev load_lora_weights timing"
|
| 54 |
+
)
|
| 55 |
+
parser.add_argument("--model", default="black-forest-labs/FLUX.1-dev")
|
| 56 |
+
parser.add_argument("--lora", required=True, help="LoRA adapter repo ID or local folder / file path")
|
| 57 |
+
parser.add_argument("--runs", type=int, default=3)
|
| 58 |
+
args = parser.parse_args()
|
| 59 |
+
|
| 60 |
+
benchmark_load_lora(
|
| 61 |
+
base_model=args.model,
|
| 62 |
+
lora_source=args.lora,
|
| 63 |
+
runs=args.runs
|
| 64 |
+
)
|