--- base_model: vectorzhou/gemma-2-2b-it-alpaca-cleaned-SFT datasets: PKU-Alignment/PKU-SafeRLHF library_name: transformers model_name: gemma-2-2b-it-alpaca-cleaned-SFT-PKU-SafeRLHF-OnlineIPO1 tags: - generated_from_trainer - text-generation - fine-tuned - trl - extra-gradient licence: license --- # Model Card for gemma-2-2b-it-alpaca-cleaned-SFT-PKU-SafeRLHF-OnlineIPO1 This model is a fine-tuned version of [vectorzhou/gemma-2-2b-it-alpaca-cleaned-SFT](https://huggingface.co/vectorzhou/gemma-2-2b-it-alpaca-cleaned-SFT) on the [PKU-Alignment/PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="vectorzhou/gemma-2-2b-it-alpaca-cleaned-SFT-PKU-SafeRLHF-OnlineIPO1-0317153039-epoch-3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [Visualize in Weights & Biases](https://wandb.ai/zhourunlongvector/nlhf/runs/oo2oec73) This model was trained with Extragradient, a method introduced in [Extragradient Preference Optimization (EGPO): Beyond Last-Iterate Convergence for Nash Learning from Human Feedback](https://huggingface.co/papers/2503.08942). ### Framework versions - TRL: 0.13.0 - Transformers: 4.48.0 - Pytorch: 2.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite Extragradient as: ```bibtex @misc{zhou2025extragradientpreferenceoptimizationegpo, title={Extragradient Preference Optimization (EGPO): Beyond Last-Iterate Convergence for Nash Learning from Human Feedback}, author={Runlong Zhou and Maryam Fazel and Simon S. Du}, year={2025}, eprint={2503.08942}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.08942}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```