--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** None tokens - **Output Dimensionality:** 4096 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` LLM2VecSentenceTransformer( (0): LLM2VecWrapper( (llm2vec_model): LLM2Vec( (model): LlamaBiModel( (embed_tokens): Embedding(128256, 4096) (layers): ModuleList( (0-31): 32 x ModifiedLlamaDecoderLayer( (self_attn): ModifiedLlamaSdpaAttention( (q_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False) (k_proj): Linear8bitLt(in_features=4096, out_features=1024, bias=False) (v_proj): Linear8bitLt(in_features=4096, out_features=1024, bias=False) (o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear8bitLt(in_features=4096, out_features=14336, bias=False) (up_proj): Linear8bitLt(in_features=4096, out_features=14336, bias=False) (down_proj): Linear8bitLt(in_features=14336, out_features=4096, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() (rotary_emb): LlamaRotaryEmbedding() ) ) ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("velvetScar/llm2vec-llama-3.1-8B") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.1.1 - Transformers: 4.43.1 - PyTorch: 2.4.0 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX