--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-multilingual-base tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: gte-multilingual-base-edu-scorer-lr3e4-bs32 results: [] --- # gte-multilingual-base-edu-scorer-lr3e4-bs32 This model is a fine-tuned version of [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4840 - Precision: 0.0303 - Recall: 0.1667 - F1 Macro: 0.0513 - Accuracy: 0.1818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:| | No log | 0 | 0 | 3.8217 | 0.0587 | 0.1667 | 0.0869 | 0.3524 | | 1.6594 | 0.3368 | 1000 | 1.5917 | 0.0516 | 0.1667 | 0.0788 | 0.3094 | | 1.5964 | 0.6736 | 2000 | 1.5910 | 0.0516 | 0.1667 | 0.0788 | 0.3094 | | 1.6156 | 1.0104 | 3000 | 1.5900 | 0.0516 | 0.1667 | 0.0788 | 0.3094 | | 1.586 | 1.3473 | 4000 | 1.5905 | 0.0516 | 0.1667 | 0.0788 | 0.3094 | | 1.5427 | 1.6841 | 5000 | 1.5903 | 0.0516 | 0.1667 | 0.0788 | 0.3094 | ### Framework versions - Transformers 4.53.2 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2