--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy base_model: vesteinn/IceBERT model-index: - name: IceBERT-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - type: precision value: 0.8870349771350884 name: Precision - type: recall value: 0.8575696021029992 name: Recall - type: f1 value: 0.8720534629404617 name: F1 - type: accuracy value: 0.9848236357672584 name: Accuracy --- # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0815 - Precision: 0.8870 - Recall: 0.8576 - F1: 0.8721 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0536 | 1.0 | 2904 | 0.0749 | 0.8749 | 0.8426 | 0.8585 | 0.9831 | | 0.0269 | 2.0 | 5808 | 0.0754 | 0.8734 | 0.8471 | 0.8600 | 0.9840 | | 0.0173 | 3.0 | 8712 | 0.0815 | 0.8870 | 0.8576 | 0.8721 | 0.9848 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3