VicFonch
commited on
README.md: Update
Browse files
README.md
CHANGED
|
@@ -1,11 +1,70 @@
|
|
| 1 |
---
|
| 2 |
-
language: en
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
-
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
tags:
|
| 3 |
+
- video-frame-interpolation
|
| 4 |
+
- diffusion-model
|
| 5 |
+
- animation
|
| 6 |
+
- uncertainty-estimation
|
| 7 |
---
|
| 8 |
|
| 9 |
+
# 🤖 Multi‑Input ResShift Diffusion VFI
|
| 10 |
+
|
| 11 |
+
<div align="left">
|
| 12 |
+
<a href='https://arxiv.org/pdf/2504.05402'><img src='https://img.shields.io/badge/arXiv-2405.17933-b31b1b.svg'></a>
|
| 13 |
+
<a href='https://doubiiu.github.io/projects/ToonCrafter/'><img src='https://img.shields.io/badge/Repo-Code-blue'></a>
|
| 14 |
+
<a href='https://colab.research.google.com/drive/1MGYycbNMW6Mxu5MUqw_RW_xxiVeHK5Aa#scrollTo=EKaYCioiP3tQ'><img src='https://img.shields.io/badge/Colab-Demo-Green'></a>
|
| 15 |
+
</div>
|
| 16 |
+
|
| 17 |
+
## ⚙️ Setup
|
| 18 |
+
|
| 19 |
+
Start by downloading the source code directly from GitHub.
|
| 20 |
+
|
| 21 |
+
```bash
|
| 22 |
+
git clone https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI.git
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
Create a conda environment and install all the requirements
|
| 26 |
+
|
| 27 |
+
```bash
|
| 28 |
+
conda create -n multi-input-resshift python=3.10
|
| 29 |
+
conda activate multi-input-resshift
|
| 30 |
+
pip install -r requirements.txt
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
**Note**: Make sure your system is compatible with **CUDA 12.4**. If not, install [CuPy](https://docs.cupy.dev/en/stable/install.html) according to your current CUDA version.
|
| 34 |
+
|
| 35 |
+
## 🚀 Inference Example
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
import os
|
| 39 |
+
from PIL import Image
|
| 40 |
+
import numpy as np
|
| 41 |
+
import matplotlib.pyplot as plt
|
| 42 |
+
|
| 43 |
+
from torchvision.transforms import Compose, ToTensor, Resize, Normalize
|
| 44 |
+
from utils.utils import denorm
|
| 45 |
+
from model.hub import MultiInputResShiftHub
|
| 46 |
+
|
| 47 |
+
model = MultiInputResShiftHub.from_pretrained("vfontech/Multiple-Input-Resshift-VFI")
|
| 48 |
+
model.requires_grad_(False).cuda().eval()
|
| 49 |
+
|
| 50 |
+
img0_path = r"_data\example_images\frame1.png"
|
| 51 |
+
img2_path = r"_data\example_images\frame3.png"
|
| 52 |
+
|
| 53 |
+
transforms = Compose([
|
| 54 |
+
Resize((256, 448)),
|
| 55 |
+
ToTensor(),
|
| 56 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 57 |
+
])
|
| 58 |
+
|
| 59 |
+
img0 = transforms(Image.open(img0_path).convert("RGB")).unsqueeze(0).cuda()
|
| 60 |
+
img2 = transforms(Image.open(img2_path).convert("RGB")).unsqueeze(0).cuda()
|
| 61 |
+
|
| 62 |
+
img1 = model.reverse_process([img0, img2], 0.5)
|
| 63 |
+
|
| 64 |
+
plt.figure(figsize=(10, 5))
|
| 65 |
+
plt.subplot(1, 2, 1)
|
| 66 |
+
plt.imshow(denorm(img0, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]).squeeze().permute(1, 2, 0).cpu().numpy())
|
| 67 |
+
plt.subplot(1, 2, 2)
|
| 68 |
+
plt.imshow(denorm(It, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]).squeeze().permute(1, 2, 0).cpu().numpy())
|
| 69 |
+
plt.show()
|
| 70 |
+
```
|