--- library_name: transformers language: - fa license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - vhdm/persian-voice-v1.1 metrics: - wer model-index: - name: vhdm/whisper-v3-turbo-persian-v1.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: vhdm/persian-voice-v1 type: vhdm/persian-voice-v1.1 args: 'config: fa, split: test' metrics: - name: Wer type: wer value: 14.065335753176045 --- # vhdm/whisper-v3-turbo-persian-v1.1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the vhdm/persian-voice-v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1445 - Wer: 14.0653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.219 | 0.6150 | 1000 | 0.2093 | 22.0750 | | 0.1191 | 1.2300 | 2000 | 0.1698 | 17.8463 | | 0.1051 | 1.8450 | 3000 | 0.1485 | 15.7895 | | 0.0644 | 2.4600 | 4000 | 0.1530 | 16.0375 | | 0.0289 | 3.0750 | 5000 | 0.1445 | 14.0653 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1