File size: 2,013 Bytes
8901e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-russian
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: my_awesome_asr_mind_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_asr_mind_model

This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-russian](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-russian) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.6914
- Wer: 0.9317

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 16.4326       | 0.3436 | 100  | 26.2073         | 1.0    |
| 16.1132       | 0.6873 | 200  | 13.6308         | 1.0    |
| 3.3225        | 1.0309 | 300  | 10.8892         | 1.0    |
| 3.6426        | 1.3746 | 400  | 6.1344          | 0.9985 |
| 2.6996        | 1.7182 | 500  | 4.0074          | 0.9930 |
| 2.2841        | 2.0619 | 600  | 4.9802          | 0.9742 |
| 2.2091        | 2.4055 | 700  | 7.2261          | 0.9517 |
| 2.089         | 2.7491 | 800  | 8.6914          | 0.9317 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Tokenizers 0.19.1