--- library_name: peft license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-model-small-ro-finetune-5k-15-15 results: [] --- # whisper-model-small-ro-finetune-5k-15-15 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0961 - Wer: 0.7677 - Cer: 0.5417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.6558 | 1.0 | 82 | 1.7449 | 0.8961 | 0.5965 | | 1.5043 | 2.0 | 164 | 1.2044 | 1.0445 | 1.1512 | | 1.3584 | 3.0 | 246 | 1.1374 | 0.9 | 0.8215 | | 1.2921 | 4.0 | 328 | 1.1058 | 0.7583 | 0.6019 | | 1.2643 | 5.0 | 410 | 1.0961 | 0.7677 | 0.5417 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1