File size: 5,365 Bytes
f5943d1
 
 
 
 
 
 
 
 
 
 
c064b4c
f5943d1
 
 
 
 
 
c064b4c
 
 
f5943d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c064b4c
f5943d1
 
e04241e
f5943d1
 
 
 
 
 
c064b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
from .vision_encoder import VisionEncoder
from .configuration_moondream import MoondreamConfig
from transformers import PreTrainedModel
import re

from .modeling_phi import PhiForCausalLM
from .configuration_moondream import PhiConfig

class Moondream(PreTrainedModel):
    config_class = MoondreamConfig
    _supports_flash_attn_2 = True

    def __init__(self, config):
        super().__init__(config)
        self.vision_encoder = VisionEncoder()

        if type(config.phi_config) == dict:
            phi_config = PhiConfig(
                **config.phi_config, attn_implementation=config._attn_implementation
            )
        else:
            phi_config = config.phi_config
        self.text_model = PhiForCausalLM(phi_config)

    @property
    def device(self):
        return self.text_model.device

    def encode_image(self, image):
        return self.vision_encoder(image)

    def input_embeds(self, prompt, image_embeds, tokenizer):
        def _tokenize(txt):
            return tokenizer(
                txt, return_tensors="pt", add_special_tokens=False
            ).input_ids.to(self.device)

        text_emb = self.text_model.get_input_embeddings()

        # Add BOS token
        embeds = []
        embeds.append(
            text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
        )

        if "<image>" not in prompt:
            embeds.append(text_emb(_tokenize(prompt)))
        else:
            assert prompt.count("<image>") == 1
            before, after = prompt.split("<image>")
            embeds.append(text_emb(_tokenize(f"{before}<image>")))
            embeds.append(image_embeds.to(self.device))
            embeds.append(text_emb(_tokenize(f"</image>{after}")))

        return torch.cat(embeds, dim=1)

    def generate(
        self,
        image_embeds,
        prompt,
        tokenizer,
        eos_text="<END>",
        max_new_tokens=128,
        **kwargs,
    ):
        eos_tokens = tokenizer(eos_text, add_special_tokens=False)[0].ids

        generate_config = {
            "eos_token_id": eos_tokens,
            "bos_token_id": tokenizer.bos_token_id,
            "pad_token_id": tokenizer.eos_token_id,
            "max_new_tokens": max_new_tokens,
            **kwargs,
        }

        with torch.no_grad():
            inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
            output_ids = self.text_model.generate(
                inputs_embeds=inputs_embeds, **generate_config
            )

        return tokenizer.batch_decode(output_ids, skip_special_tokens=True)

    def answer_question(
        self,
        image_embeds,
        question,
        tokenizer,
        chat_history="",
        result_queue=None,
        **kwargs,
    ):
        prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer: "
        answer = self.generate(
            image_embeds,
            prompt,
            eos_text="<END>",
            tokenizer=tokenizer,
            max_new_tokens=512,
            **kwargs,
        )[0]
        cleaned_answer = re.sub("<$|<END$", "", answer).strip()

        # Use the result_queue to pass the result if it is provided
        if result_queue:
            result_queue.put(cleaned_answer)
        else:
            return cleaned_answer

    def batch_answer(
        self,
        images,
        prompts,
        tokenizer,
        **kwargs,
    ):
        eos_tokens = tokenizer("<END>", add_special_tokens=False)[0].ids

        image_embeds = self.encode_image(images)

        templated_prompts = [
            f"<image>\n\nQuestion: {prompt}\n\nAnswer: " for prompt in prompts
        ]
        prompt_embs = [
            self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
            for prompt, image_embed in zip(templated_prompts, image_embeds)
        ]

        bos_emb = prompt_embs[0][0]
        max_len = max([p.shape[0] for p in prompt_embs])

        inputs_embeds = torch.cat(
            [
                torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
                for p in prompt_embs
            ],
            dim=0,
        )
        attention_mask = torch.cat(
            [
                torch.cat(
                    [
                        torch.zeros(
                            1,
                            max_len - p.shape[0],
                            device=self.device,
                            dtype=torch.long,
                        ),
                        torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
                    ],
                    dim=1,
                )
                for p in prompt_embs
            ],
            dim=0,
        )

        generate_config = {
            "eos_token_id": eos_tokens,
            "bos_token_id": tokenizer.bos_token_id,
            "pad_token_id": tokenizer.eos_token_id,
            "max_new_tokens": 512,
            **kwargs,
        }

        with torch.no_grad():
            output_ids = self.text_model.generate(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                **generate_config,
            )

        return [
            re.sub("<$|<END$", "", x).strip()
            for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        ]