|
import torch |
|
import torch.nn as nn |
|
import random |
|
|
|
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional, List |
|
from PIL import Image |
|
from dataclasses import dataclass |
|
from tokenizers import Tokenizer |
|
|
|
from .config import MoondreamConfig |
|
from .image_crops import reconstruct_from_crops |
|
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model |
|
from .text import build_text_model, text_encoder, lm_head, text_decoder |
|
from .region import ( |
|
decode_coordinate, |
|
encode_coordinate, |
|
decode_size, |
|
encode_size, |
|
encode_spatial_refs, |
|
SpatialRefs, |
|
) |
|
from .layers import QuantizedLinear |
|
from .lora import variant_state_dict |
|
from .utils import remove_outlier_points |
|
|
|
ImageEncodingSettings = TypedDict( |
|
"ImageEncodingSettings", |
|
{"variant": str}, |
|
total=False, |
|
) |
|
|
|
TextSamplingSettings = TypedDict( |
|
"TextSamplingSettings", |
|
{ |
|
"max_tokens": int, |
|
"temperature": float, |
|
"top_p": float, |
|
"variant": str, |
|
}, |
|
total=False, |
|
) |
|
|
|
ObjectSamplingSettings = TypedDict( |
|
"ObjectSamplingSettings", |
|
{"max_objects": int, "variant": str}, |
|
total=False, |
|
) |
|
|
|
|
|
DEFAULT_MAX_TOKENS = 768 |
|
DEFAULT_TEMPERATURE = 0.5 |
|
DEFAULT_TOP_P = 0.3 |
|
DEFAULT_MAX_OBJECTS = 50 |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EncodedImage: |
|
pos: int |
|
caches: List[Tuple[torch.Tensor, torch.Tensor]] |
|
|
|
|
|
class KVCache(nn.Module): |
|
|
|
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype): |
|
super().__init__() |
|
cache_shape = (1, n_kv_heads, max_context, dim // n_heads) |
|
self.register_buffer( |
|
"k_cache", torch.zeros(*cache_shape, device=device, dtype=dtype) |
|
) |
|
self.register_buffer( |
|
"v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype) |
|
) |
|
|
|
def update(self, pos_ids, k, v): |
|
kout, vout = self.k_cache, self.v_cache |
|
kout[:, :, pos_ids, :] = k |
|
vout[:, :, pos_ids, :] = v |
|
return kout, vout |
|
|
|
|
|
class MoondreamModel(nn.Module): |
|
|
|
def __init__( |
|
self, config: MoondreamConfig, dtype=torch.bfloat16, setup_caches=True |
|
): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.tokenizer = Tokenizer.from_pretrained("moondream/starmie-v1") |
|
self.vision = build_vision_model(config.vision, dtype) |
|
self.text = build_text_model(config.text, dtype) |
|
|
|
|
|
linear_cls = ( |
|
QuantizedLinear if config.region.group_size is not None else nn.Linear |
|
) |
|
self.region = nn.ModuleDict( |
|
{ |
|
"coord_encoder": linear_cls( |
|
config.region.coord_feat_dim, config.region.dim, dtype=dtype |
|
), |
|
"coord_decoder": nn.ModuleDict( |
|
{ |
|
"fc1": linear_cls( |
|
config.region.dim, config.region.inner_dim, dtype=dtype |
|
), |
|
"fc2": linear_cls( |
|
config.region.inner_dim, |
|
config.region.coord_out_dim, |
|
dtype=dtype, |
|
), |
|
} |
|
), |
|
"size_encoder": linear_cls( |
|
config.region.size_feat_dim, config.region.dim, dtype=dtype |
|
), |
|
"size_decoder": nn.ModuleDict( |
|
{ |
|
"fc1": linear_cls( |
|
config.region.dim, config.region.inner_dim, dtype=dtype |
|
), |
|
"fc2": linear_cls( |
|
config.region.inner_dim, |
|
config.region.size_out_dim, |
|
dtype=dtype, |
|
), |
|
} |
|
), |
|
} |
|
) |
|
self.region.coord_features = nn.Parameter( |
|
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T |
|
) |
|
self.region.size_features = nn.Parameter( |
|
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T |
|
) |
|
|
|
attn_mask = torch.tril( |
|
torch.ones( |
|
1, 1, config.text.max_context, config.text.max_context, dtype=torch.bool |
|
) |
|
) |
|
patch_w = config.vision.crop_size // config.vision.enc_patch_size |
|
prefix_attn_len = 1 + patch_w**2 |
|
attn_mask[..., :prefix_attn_len, :prefix_attn_len] = 1 |
|
self.register_buffer("attn_mask", attn_mask, persistent=False) |
|
|
|
|
|
if setup_caches: |
|
self._setup_caches() |
|
|
|
def _setup_caches(self): |
|
c = self.config.text |
|
for b in self.text.blocks: |
|
b.kv_cache = KVCache( |
|
c.n_heads, |
|
c.n_kv_heads, |
|
c.max_context, |
|
c.dim, |
|
device=self.device, |
|
dtype=self.vision.pos_emb.dtype, |
|
) |
|
|
|
@property |
|
def device(self): |
|
return self.vision.pos_emb.device |
|
|
|
def _vis_enc(self, x: torch.Tensor): |
|
return vision_encoder(x, self.vision, self.config.vision) |
|
|
|
def _vis_proj(self, g: torch.Tensor, r: torch.Tensor): |
|
return vision_projection(g, r, self.vision, self.config.vision) |
|
|
|
def _prefill( |
|
self, |
|
x: torch.Tensor, |
|
attn_mask: torch.Tensor, |
|
pos_ids: torch.Tensor, |
|
lora: Optional[torch.Tensor], |
|
): |
|
return text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora) |
|
|
|
def _decode_one_tok( |
|
self, |
|
x: torch.Tensor, |
|
attn_mask: torch.Tensor, |
|
pos_ids: torch.Tensor, |
|
lora: Optional[torch.Tensor], |
|
): |
|
hidden = text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora) |
|
logits = lm_head(hidden, self.text) |
|
return logits, hidden |
|
|
|
def compile(self): |
|
for module in self.modules(): |
|
if isinstance(module, QuantizedLinear): |
|
module.unpack() |
|
|
|
|
|
self._vis_enc = torch.compile(self._vis_enc, fullgraph=True) |
|
self._prefill = torch.compile(self._prefill, fullgraph=True) |
|
self._decode_one_tok = torch.compile( |
|
self._decode_one_tok, fullgraph=True, mode="reduce-overhead" |
|
) |
|
|
|
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor: |
|
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device) |
|
|
|
torch._dynamo.mark_dynamic(all_crops, 0) |
|
|
|
outputs = self._vis_enc(all_crops) |
|
|
|
global_features = outputs[0] |
|
local_features = outputs[1:].view( |
|
-1, |
|
self.config.vision.enc_n_layers, |
|
self.config.vision.enc_n_layers, |
|
self.config.vision.enc_dim, |
|
) |
|
|
|
reconstructed = reconstruct_from_crops( |
|
local_features, |
|
tiling, |
|
patch_size=1, |
|
overlap_margin=self.config.vision.overlap_margin, |
|
) |
|
|
|
return self._vis_proj(global_features, reconstructed) |
|
|
|
def encode_image( |
|
self, |
|
image: Union[Image.Image, EncodedImage], |
|
settings: Optional[ImageEncodingSettings] = None, |
|
) -> EncodedImage: |
|
if isinstance(image, EncodedImage): |
|
return image |
|
elif not isinstance(image, Image.Image): |
|
raise ValueError("image must be a PIL Image or EncodedImage") |
|
|
|
lora = ( |
|
variant_state_dict(settings["variant"], device=self.device) |
|
if settings is not None and settings["variant"] is not None |
|
else None |
|
) |
|
|
|
|
|
|
|
with torch.inference_mode(): |
|
img_emb = self._run_vision_encoder(image) |
|
bos_emb = text_encoder( |
|
torch.tensor([[self.config.tokenizer.bos_id]], device=self.device), |
|
self.text, |
|
) |
|
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1) |
|
mask = self.attn_mask[:, :, 0 : inputs_embeds.size(1), :] |
|
pos_ids = torch.arange(inputs_embeds.size(1), dtype=torch.long) |
|
self._prefill(inputs_embeds, mask, pos_ids, lora) |
|
|
|
return EncodedImage( |
|
pos=inputs_embeds.size(1), |
|
caches=[ |
|
( |
|
b.kv_cache.k_cache[:, :, : inputs_embeds.size(1), :].clone(), |
|
b.kv_cache.v_cache[:, :, : inputs_embeds.size(1), :].clone(), |
|
) |
|
for b in self.text.blocks |
|
], |
|
) |
|
|
|
def _apply_top_p(self, probs: torch.Tensor, top_p: float): |
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) |
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
mask = probs_sum - probs_sort > top_p |
|
probs_sort[mask] = 0.0 |
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
next_probs = torch.zeros_like(probs) |
|
next_probs.scatter_(dim=-1, index=probs_idx, src=probs_sort) |
|
return next_probs |
|
|
|
def _prefill_prompt( |
|
self, |
|
prompt_tokens: torch.Tensor, |
|
pos: int, |
|
temperature: float, |
|
top_p: float, |
|
spatial_refs: Optional[SpatialRefs] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
lora: Optional[dict] = None, |
|
): |
|
with torch.inference_mode(): |
|
prompt_emb = text_encoder(prompt_tokens, self.text) |
|
|
|
if spatial_refs: |
|
encoded_refs = encode_spatial_refs(spatial_refs, self.region) |
|
prompt_emb[prompt_tokens == self.config.tokenizer.coord_id] = ( |
|
encoded_refs["coords"] |
|
) |
|
if encoded_refs["sizes"] is not None: |
|
prompt_emb[prompt_tokens == self.config.tokenizer.size_id] = ( |
|
encoded_refs["sizes"] |
|
) |
|
|
|
torch._dynamo.mark_dynamic(prompt_emb, 1) |
|
|
|
if attn_mask is None: |
|
attn_mask = self.attn_mask |
|
|
|
mask = attn_mask[:, :, pos : pos + prompt_emb.size(1), :] |
|
pos_ids = torch.arange(pos, pos + prompt_emb.size(1), dtype=torch.long) |
|
hidden_BC = self._prefill(prompt_emb, mask, pos_ids, lora) |
|
logits_BV = lm_head(hidden_BC, self.text) |
|
|
|
if temperature == 0: |
|
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1) |
|
else: |
|
probs = torch.softmax(logits_BV / temperature, dim=-1) |
|
probs = self._apply_top_p(probs, top_p) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
|
pos = pos + prompt_emb.size(1) |
|
return logits_BV, hidden_BC, next_token, pos |
|
|
|
def _generate_reasoning( |
|
self, |
|
prompt_tokens, |
|
pos, |
|
settings: Optional[TextSamplingSettings] = None, |
|
spatial_refs: Optional[SpatialRefs] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
) -> Tuple[int, str, List[dict]]: |
|
max_tokens = ( |
|
settings.get("max_tokens", DEFAULT_MAX_TOKENS) |
|
if settings |
|
else DEFAULT_MAX_TOKENS |
|
) |
|
temperature = ( |
|
settings.get("temperature", DEFAULT_TEMPERATURE) |
|
if settings |
|
else DEFAULT_TEMPERATURE |
|
) |
|
lora = ( |
|
variant_state_dict(settings["variant"], device=self.device) |
|
if settings is not None and "variant" in settings |
|
else None |
|
) |
|
|
|
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P |
|
eos_id = self.config.tokenizer.answer_id |
|
|
|
_, last_hidden_BC, next_token, pos = self._prefill_prompt( |
|
prompt_tokens, |
|
pos, |
|
temperature, |
|
top_p, |
|
spatial_refs, |
|
attn_mask=attn_mask, |
|
lora=lora, |
|
) |
|
|
|
text_token_chunks = [[]] |
|
grounding_chunks = [[]] |
|
|
|
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool) |
|
mask[:, :, :pos] = 1 |
|
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long) |
|
generated_tokens = 0 |
|
|
|
while ( |
|
next_token_id := next_token.item() |
|
) != eos_id and generated_tokens < max_tokens: |
|
if ( |
|
next_token_id == self.config.tokenizer.start_ground_points_id |
|
or next_token_id == self.config.tokenizer.end_ground_id |
|
): |
|
text_token_chunks.append([]) |
|
grounding_chunks.append([]) |
|
|
|
text_token_chunks[-1].append(next_token_id) |
|
|
|
with torch.inference_mode(): |
|
if next_token_id == self.config.tokenizer.coord_id: |
|
coord_logits = decode_coordinate(last_hidden_BC, self.region) |
|
coord = torch.argmax(coord_logits, dim=-1) / coord_logits.size(-1) |
|
grounding_chunks[-1].append(coord.item()) |
|
|
|
next_emb = encode_coordinate( |
|
coord.to(dtype=coord_logits.dtype), self.region |
|
).unsqueeze(0) |
|
else: |
|
next_emb = text_encoder(next_token, self.text) |
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos |
|
|
|
logits_BV, last_hidden_BC = self._decode_one_tok( |
|
next_emb, mask, pos_ids, lora |
|
) |
|
logits_BV[:, self.config.tokenizer.eos_id] = float("-inf") |
|
logits_BV[:, self.config.tokenizer.size_id] = float("-inf") |
|
|
|
pos += 1 |
|
|
|
if temperature == 0: |
|
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1) |
|
else: |
|
probs = torch.softmax(logits_BV / temperature, dim=-1) |
|
probs = self._apply_top_p(probs, top_p) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
|
generated_tokens += 1 |
|
|
|
text_chunks = [ |
|
self.tokenizer.decode(chunk_tokens) for chunk_tokens in text_token_chunks |
|
] |
|
text = "".join(text_chunks) |
|
|
|
start_idx = 0 |
|
grounding = [] |
|
for text_chunk, grounding_chunk in zip(text_chunks, grounding_chunks): |
|
if len(grounding_chunk) > 1: |
|
points = [] |
|
for i in range(0, len(grounding_chunk) - (len(grounding_chunk) % 2), 2): |
|
points.append((grounding_chunk[i], grounding_chunk[i + 1])) |
|
grounding.append( |
|
{ |
|
"start_idx": start_idx, |
|
"end_idx": start_idx + len(text_chunk), |
|
"points": points, |
|
} |
|
) |
|
start_idx += len(text_chunk) |
|
|
|
return pos, text, grounding |
|
|
|
def _generate_answer( |
|
self, |
|
prompt_tokens: torch.Tensor, |
|
pos: int, |
|
settings: Optional[TextSamplingSettings] = None, |
|
spatial_refs: Optional[SpatialRefs] = None, |
|
eos_id: Optional[int] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
): |
|
max_tokens = ( |
|
settings.get("max_tokens", DEFAULT_MAX_TOKENS) |
|
if settings |
|
else DEFAULT_MAX_TOKENS |
|
) |
|
temperature = ( |
|
settings.get("temperature", DEFAULT_TEMPERATURE) |
|
if settings |
|
else DEFAULT_TEMPERATURE |
|
) |
|
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P |
|
eos_id = eos_id if eos_id is not None else self.config.tokenizer.eos_id |
|
lora = ( |
|
variant_state_dict(settings["variant"], device=self.device) |
|
if settings is not None and "variant" in settings |
|
else None |
|
) |
|
|
|
_, _, next_token, pos = self._prefill_prompt( |
|
prompt_tokens, |
|
pos, |
|
temperature, |
|
top_p, |
|
spatial_refs, |
|
attn_mask=attn_mask, |
|
lora=lora, |
|
) |
|
|
|
def generator(next_token, pos): |
|
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool) |
|
mask[:, :, :pos] = 1 |
|
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long) |
|
generated_tokens = 0 |
|
|
|
|
|
token_cache = [] |
|
print_len = 0 |
|
|
|
while ( |
|
next_token_id := next_token.item() |
|
) != eos_id and generated_tokens < max_tokens: |
|
|
|
token_cache.append(next_token_id) |
|
|
|
|
|
text = self.tokenizer.decode(token_cache) |
|
|
|
|
|
if text.endswith("\n"): |
|
printable_text = text[print_len:] |
|
token_cache = [] |
|
print_len = 0 |
|
if printable_text: |
|
yield printable_text |
|
|
|
elif len(text) > 0 and _is_cjk_char(ord(text[-1])): |
|
printable_text = text[print_len:] |
|
print_len += len(printable_text) |
|
if printable_text: |
|
yield printable_text |
|
|
|
else: |
|
last_space_idx = text.rfind(" ", print_len) |
|
if last_space_idx >= print_len: |
|
printable_text = text[print_len : last_space_idx + 1] |
|
print_len += len(printable_text) |
|
if printable_text: |
|
yield printable_text |
|
|
|
with torch.inference_mode(): |
|
next_emb = text_encoder(next_token, self.text) |
|
mask[:, :, pos], pos_ids[0] = 1, pos |
|
|
|
logits_BV, _ = self._decode_one_tok(next_emb, mask, pos_ids, lora) |
|
logits_BV[:, self.config.tokenizer.answer_id] = float("-inf") |
|
|
|
pos += 1 |
|
|
|
if temperature == 0: |
|
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze( |
|
1 |
|
) |
|
else: |
|
probs = torch.softmax(logits_BV / temperature, dim=-1) |
|
probs = self._apply_top_p(probs, top_p) |
|
next_token = torch.multinomial(probs, num_samples=1) |
|
|
|
generated_tokens += 1 |
|
|
|
|
|
if token_cache: |
|
text = self.tokenizer.decode(token_cache) |
|
printable_text = text[print_len:] |
|
if printable_text: |
|
yield printable_text |
|
|
|
return generator(next_token, pos) |
|
|
|
def query( |
|
self, |
|
image: Optional[Union[Image.Image, EncodedImage]] = None, |
|
question: str = None, |
|
reasoning: bool = False, |
|
spatial_refs: Optional[SpatialRefs] = None, |
|
stream: bool = False, |
|
settings: Optional[TextSamplingSettings] = None, |
|
): |
|
if self.config.tokenizer.templates["query"] is None: |
|
raise NotImplementedError("Model does not support querying.") |
|
|
|
if question is None: |
|
raise ValueError("question must be provided.") |
|
|
|
if spatial_refs and image is None: |
|
raise ValueError("spatial_refs can only be used with an image.") |
|
|
|
attn_mask = self.attn_mask |
|
if image is not None: |
|
image = self.encode_image(image, settings) |
|
self.load_encoded_image(image) |
|
pos = image.pos |
|
prompt_toks = self.config.tokenizer.templates["query"]["prefix"] |
|
else: |
|
self._setup_caches() |
|
pos = 0 |
|
prompt_toks = [ |
|
self.config.tokenizer.bos_id |
|
] + self.config.tokenizer.templates["query"]["prefix"] |
|
max_context = self.config.text.max_context |
|
attn_mask = torch.tril( |
|
torch.ones(1, 1, max_context, max_context, dtype=torch.bool) |
|
).to(self.device) |
|
|
|
spatial_toks = [] |
|
if spatial_refs: |
|
for ref in spatial_refs: |
|
coord_id = self.config.tokenizer.coord_id |
|
size_id = self.config.tokenizer.size_id |
|
if len(ref) == 2: |
|
spatial_toks.extend([coord_id, coord_id]) |
|
else: |
|
spatial_toks.extend([coord_id, coord_id, size_id]) |
|
|
|
prompt_tokens = [ |
|
prompt_toks |
|
+ spatial_toks |
|
+ self.tokenizer.encode(question).ids |
|
+ self.config.tokenizer.templates["query"]["suffix"] |
|
] |
|
|
|
if reasoning: |
|
prompt_tokens[0] += [self.config.tokenizer.thinking_id] |
|
prompt_tokens = torch.tensor(prompt_tokens, device=self.device) |
|
pos, reasoning_text, reasoning_grounding = self._generate_reasoning( |
|
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask |
|
) |
|
prompt_tokens = [self.config.tokenizer.templates["query"]["suffix"]] |
|
reasoning_dict = { |
|
"reasoning": {"text": reasoning_text, "grounding": reasoning_grounding} |
|
} |
|
else: |
|
prompt_tokens[0] += self.config.tokenizer.templates["query"]["suffix"] |
|
reasoning_dict = {} |
|
|
|
prompt_tokens = torch.tensor(prompt_tokens, device=self.device) |
|
|
|
def generator(): |
|
for token in self._generate_answer( |
|
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask |
|
): |
|
yield token |
|
|
|
if stream: |
|
return {**reasoning_dict, "answer": generator()} |
|
else: |
|
return {**reasoning_dict, "answer": "".join(list(generator()))} |
|
|
|
def load_encoded_image(self, encoded_image: EncodedImage): |
|
for b, (k, v) in zip(self.text.blocks, encoded_image.caches): |
|
b.kv_cache.k_cache[:, :, : k.size(2), :] = k |
|
b.kv_cache.v_cache[:, :, : v.size(2), :] = v |
|
|
|
def caption( |
|
self, |
|
image: Union[Image.Image, EncodedImage], |
|
length: Literal["normal", "short", "long"] = "normal", |
|
stream: bool = False, |
|
settings: Optional[TextSamplingSettings] = None, |
|
): |
|
if self.config.tokenizer.templates["caption"] is None: |
|
raise NotImplementedError("Model does not support captioning.") |
|
if length not in self.config.tokenizer.templates["caption"]: |
|
raise ValueError(f"Model does not support caption length '{length}'.") |
|
|
|
image = self.encode_image(image, settings) |
|
self.load_encoded_image(image) |
|
|
|
prompt_tokens = torch.tensor( |
|
[self.config.tokenizer.templates["caption"][length]], device=self.device |
|
) |
|
|
|
def generator(): |
|
for token in self._generate_answer(prompt_tokens, image.pos, settings): |
|
yield token |
|
|
|
if stream: |
|
return {"caption": generator()} |
|
else: |
|
return {"caption": "".join(list(generator()))} |
|
|
|
def _generate_points( |
|
self, |
|
hidden: torch.Tensor, |
|
next_token: torch.Tensor, |
|
pos: int, |
|
include_size: bool = True, |
|
max_objects: int = DEFAULT_MAX_OBJECTS, |
|
lora: Optional[dict] = None, |
|
): |
|
out = [] |
|
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool) |
|
mask[:, :, :pos] = 1 |
|
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long) |
|
|
|
with torch.inference_mode(): |
|
while ( |
|
next_token.item() != self.config.tokenizer.eos_id |
|
and len(out) < max_objects |
|
): |
|
x_logits = decode_coordinate(hidden, self.region) |
|
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1) |
|
next_emb = encode_coordinate( |
|
x_center.to(dtype=x_logits.dtype), self.region |
|
).unsqueeze(0) |
|
|
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos |
|
_, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora) |
|
pos += 1 |
|
y_logits = decode_coordinate(hidden, self.region) |
|
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1) |
|
next_emb = encode_coordinate( |
|
y_center.to(dtype=y_logits.dtype), self.region |
|
).unsqueeze(0) |
|
|
|
|
|
if include_size: |
|
mask[:, :, pos], pos_ids[0] = 1, pos |
|
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora) |
|
pos += 1 |
|
size_logits = decode_size(hidden, self.region) |
|
|
|
|
|
w_bin = torch.argmax(size_logits[0], dim=-1) |
|
h_bin = torch.argmax(size_logits[1], dim=-1) |
|
|
|
|
|
|
|
w = torch.pow(2.0, (w_bin.float() / 1023.0) * 10.0 - 10.0) |
|
h = torch.pow(2.0, (h_bin.float() / 1023.0) * 10.0 - 10.0) |
|
|
|
next_emb = ( |
|
encode_size( |
|
torch.tensor( |
|
[w, h], device=self.device, dtype=size_logits.dtype |
|
), |
|
self.region, |
|
) |
|
.unsqueeze(0) |
|
.unsqueeze(0) |
|
) |
|
|
|
|
|
out.append( |
|
{ |
|
"x_min": x_center.item() - w.item() / 2, |
|
"y_min": y_center.item() - h.item() / 2, |
|
"x_max": x_center.item() + w.item() / 2, |
|
"y_max": y_center.item() + h.item() / 2, |
|
} |
|
) |
|
else: |
|
out.append({"x": x_center.item(), "y": y_center.item()}) |
|
|
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos |
|
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora) |
|
pos += 1 |
|
next_token = torch.argmax(logits, dim=-1) |
|
|
|
return out |
|
|
|
def detect( |
|
self, |
|
image: Union[Image.Image, EncodedImage], |
|
object: str, |
|
settings: Optional[ObjectSamplingSettings] = None, |
|
): |
|
if self.config.tokenizer.templates["detect"] is None: |
|
raise NotImplementedError("Model does not support object detection.") |
|
|
|
image = self.encode_image(image, settings) |
|
self.load_encoded_image(image) |
|
|
|
prompt_tokens = torch.tensor( |
|
[ |
|
self.config.tokenizer.templates["detect"]["prefix"] |
|
+ self.tokenizer.encode(" " + object).ids |
|
+ self.config.tokenizer.templates["detect"]["suffix"] |
|
], |
|
device=self.device, |
|
) |
|
|
|
lora = ( |
|
variant_state_dict(settings["variant"], device=self.device) |
|
if settings is not None and "variant" in settings |
|
else None |
|
) |
|
|
|
_, hidden, next_token, pos = self._prefill_prompt( |
|
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora |
|
) |
|
hidden = hidden[:, -1:, :] |
|
|
|
max_objects = ( |
|
settings.get("max_objects", DEFAULT_MAX_OBJECTS) |
|
if settings |
|
else DEFAULT_MAX_OBJECTS |
|
) |
|
objects = self._generate_points( |
|
hidden, |
|
next_token, |
|
pos, |
|
include_size=True, |
|
max_objects=max_objects, |
|
lora=lora, |
|
) |
|
|
|
return {"objects": objects} |
|
|
|
def point( |
|
self, |
|
image: Union[Image.Image, EncodedImage], |
|
object: str, |
|
settings: Optional[ObjectSamplingSettings] = None, |
|
): |
|
if self.config.tokenizer.templates["point"] is None: |
|
raise NotImplementedError("Model does not support pointing.") |
|
|
|
image = self.encode_image(image, settings) |
|
self.load_encoded_image(image) |
|
|
|
prompt_tokens = torch.tensor( |
|
[ |
|
self.config.tokenizer.templates["point"]["prefix"] |
|
+ self.tokenizer.encode(" " + object).ids |
|
+ self.config.tokenizer.templates["point"]["suffix"] |
|
], |
|
device=self.device, |
|
) |
|
|
|
lora = ( |
|
variant_state_dict(settings["variant"], device=self.device) |
|
if settings is not None and "variant" in settings |
|
else None |
|
) |
|
|
|
_, hidden, next_token, pos = self._prefill_prompt( |
|
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora |
|
) |
|
hidden = hidden[:, -1:, :] |
|
|
|
max_objects = ( |
|
settings.get("max_objects", DEFAULT_MAX_OBJECTS) |
|
if settings |
|
else DEFAULT_MAX_OBJECTS |
|
) |
|
objects = self._generate_points( |
|
hidden, |
|
next_token, |
|
pos, |
|
include_size=False, |
|
max_objects=max_objects, |
|
lora=lora, |
|
) |
|
|
|
return {"points": objects} |
|
|
|
def _detect_gaze( |
|
self, |
|
image: EncodedImage, |
|
source: Tuple[float, float], |
|
force_detect: bool = False, |
|
): |
|
with torch.inference_mode(): |
|
before_emb = text_encoder( |
|
torch.tensor( |
|
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device |
|
), |
|
self.text, |
|
) |
|
after_emb = text_encoder( |
|
torch.tensor( |
|
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device |
|
), |
|
self.text, |
|
) |
|
x_emb = encode_coordinate( |
|
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.bfloat16), |
|
self.region, |
|
) |
|
y_emb = encode_coordinate( |
|
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.bfloat16), |
|
self.region, |
|
) |
|
|
|
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1) |
|
|
|
self.load_encoded_image(image) |
|
|
|
mask = self.attn_mask[:, :, image.pos : image.pos + prompt_emb.size(1), :] |
|
pos_ids = torch.arange( |
|
image.pos, image.pos + prompt_emb.size(1), dtype=torch.long |
|
) |
|
hidden = self._prefill(prompt_emb, mask, pos_ids, lora=None) |
|
logits = lm_head(hidden, self.text) |
|
next_token = torch.argmax(logits, dim=-1) |
|
pos = image.pos + prompt_emb.size(1) |
|
hidden = hidden[:, -1:, :] |
|
|
|
if force_detect: |
|
next_token = torch.tensor([[0]], device=self.device) |
|
|
|
if next_token.item() == self.config.tokenizer.eos_id: |
|
return None |
|
|
|
gaze = self._generate_points( |
|
hidden, next_token, pos, include_size=False, max_objects=1 |
|
) |
|
return gaze[0] |
|
|
|
def detect_gaze( |
|
self, |
|
image: Union[Image.Image, EncodedImage], |
|
eye: Optional[Tuple[float, float]] = None, |
|
face: Optional[Dict[str, float]] = None, |
|
unstable_settings: Dict[str, Any] = {}, |
|
): |
|
if "force_detect" in unstable_settings: |
|
force_detect = unstable_settings["force_detect"] |
|
else: |
|
force_detect = False |
|
|
|
if "prioritize_accuracy" in unstable_settings: |
|
prioritize_accuracy = unstable_settings["prioritize_accuracy"] |
|
else: |
|
prioritize_accuracy = False |
|
|
|
if not prioritize_accuracy: |
|
if eye is None: |
|
raise ValueError("eye must be provided when prioritize_accuracy=False") |
|
image = self.encode_image(image) |
|
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)} |
|
else: |
|
if ( |
|
not isinstance(image, Image.Image) |
|
and "flip_enc_img" not in unstable_settings |
|
): |
|
raise ValueError( |
|
"image must be a PIL Image when prioritize_accuracy=True, " |
|
"or flip_enc_img must be provided" |
|
) |
|
if face is None: |
|
raise ValueError("face must be provided when prioritize_accuracy=True") |
|
|
|
encoded_image = self.encode_image(image) |
|
if ( |
|
isinstance(image, Image.Image) |
|
and "flip_enc_img" not in unstable_settings |
|
): |
|
flipped_pil = image.copy() |
|
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT) |
|
encoded_flipped_image = self.encode_image(flipped_pil) |
|
else: |
|
encoded_flipped_image = unstable_settings["flip_enc_img"] |
|
|
|
N = 10 |
|
|
|
detections = [ |
|
self._detect_gaze( |
|
encoded_image, |
|
( |
|
random.uniform(face["x_min"], face["x_max"]), |
|
random.uniform(face["y_min"], face["y_max"]), |
|
), |
|
force_detect=force_detect, |
|
) |
|
for _ in range(N) |
|
] |
|
detections = [ |
|
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None |
|
] |
|
flipped_detections = [ |
|
self._detect_gaze( |
|
encoded_flipped_image, |
|
( |
|
1 - random.uniform(face["x_min"], face["x_max"]), |
|
random.uniform(face["y_min"], face["y_max"]), |
|
), |
|
force_detect=force_detect, |
|
) |
|
for _ in range(N) |
|
] |
|
detections.extend( |
|
[ |
|
(1 - gaze["x"], gaze["y"]) |
|
for gaze in flipped_detections |
|
if gaze is not None |
|
] |
|
) |
|
|
|
if len(detections) < N: |
|
return {"gaze": None} |
|
|
|
detections = remove_outlier_points(detections) |
|
mean_gaze = ( |
|
sum(gaze[0] for gaze in detections) / len(detections), |
|
sum(gaze[1] for gaze in detections) / len(detections), |
|
) |
|
|
|
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}} |
|
|
|
|
|
def _is_cjk_char(cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
if ( |
|
(cp >= 0x4E00 and cp <= 0x9FFF) |
|
or (cp >= 0x3400 and cp <= 0x4DBF) |
|
or (cp >= 0x2F800 and cp <= 0x2FA1F) |
|
): |
|
return True |
|
return False |
|
|