Upload Moondream
Browse files- generation_config.json +2 -0
- model.safetensors +2 -2
- moondream.py +2 -1
- vision_encoder.py +122 -25
generation_config.json
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
|
|
|
|
|
|
| 3 |
"transformers_version": "4.38.2"
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
"transformers_version": "4.38.2"
|
| 6 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7840817a7015edf729fa3d60099c35f08fc30511a1dc8ea231acd0e9a6555bb8
|
| 3 |
+
size 3733912224
|
moondream.py
CHANGED
|
@@ -29,7 +29,8 @@ class Moondream(PreTrainedModel):
|
|
| 29 |
return self.text_model.device
|
| 30 |
|
| 31 |
def encode_image(self, image):
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
def input_embeds(self, prompt, image_embeds, tokenizer):
|
| 35 |
def _tokenize(txt):
|
|
|
|
| 29 |
return self.text_model.device
|
| 30 |
|
| 31 |
def encode_image(self, image):
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
return self.vision_encoder(image)
|
| 34 |
|
| 35 |
def input_embeds(self, prompt, image_embeds, tokenizer):
|
| 36 |
def _tokenize(txt):
|
vision_encoder.py
CHANGED
|
@@ -1,7 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn.functional as F
|
| 3 |
from torch import nn
|
| 4 |
from einops import rearrange
|
|
|
|
| 5 |
from torchvision.transforms.v2 import (
|
| 6 |
Compose,
|
| 7 |
Resize,
|
|
@@ -172,7 +176,7 @@ class VisionProjection(nn.Module):
|
|
| 172 |
model_dim = 2048
|
| 173 |
hidden_dim = model_dim * 4
|
| 174 |
|
| 175 |
-
self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)
|
| 176 |
|
| 177 |
@property
|
| 178 |
def device(self):
|
|
@@ -182,6 +186,26 @@ class VisionProjection(nn.Module):
|
|
| 182 |
return self.mlp(x)
|
| 183 |
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
class VisionEncoder(nn.Module):
|
| 186 |
|
| 187 |
def __init__(self, use_flash_attn=False):
|
|
@@ -189,15 +213,7 @@ class VisionEncoder(nn.Module):
|
|
| 189 |
|
| 190 |
self.encoder = EncoderWrapper(use_flash_attn)
|
| 191 |
self.projection = VisionProjection()
|
| 192 |
-
|
| 193 |
-
self.preprocess = Compose(
|
| 194 |
-
[
|
| 195 |
-
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
|
| 196 |
-
ToImage(),
|
| 197 |
-
ToDtype(torch.float32, scale=True),
|
| 198 |
-
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 199 |
-
]
|
| 200 |
-
)
|
| 201 |
|
| 202 |
@property
|
| 203 |
def device(self):
|
|
@@ -207,22 +223,103 @@ class VisionEncoder(nn.Module):
|
|
| 207 |
def dtype(self):
|
| 208 |
return self.projection.mlp.fc1.weight.dtype
|
| 209 |
|
| 210 |
-
def
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
x = self.projection(x)
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union
|
| 2 |
+
|
| 3 |
+
import PIL.Image
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from torch import nn
|
| 7 |
from einops import rearrange
|
| 8 |
+
import PIL
|
| 9 |
from torchvision.transforms.v2 import (
|
| 10 |
Compose,
|
| 11 |
Resize,
|
|
|
|
| 176 |
model_dim = 2048
|
| 177 |
hidden_dim = model_dim * 4
|
| 178 |
|
| 179 |
+
self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim)
|
| 180 |
|
| 181 |
@property
|
| 182 |
def device(self):
|
|
|
|
| 186 |
return self.mlp(x)
|
| 187 |
|
| 188 |
|
| 189 |
+
def create_patches(image, patch_size=(378, 378)):
|
| 190 |
+
assert image.dim() == 3, "Image must be in CHW format"
|
| 191 |
+
|
| 192 |
+
_, height, width = image.shape # Channels, Height, Width
|
| 193 |
+
patch_height, patch_width = patch_size
|
| 194 |
+
|
| 195 |
+
if height == patch_height and width == patch_width:
|
| 196 |
+
return []
|
| 197 |
+
|
| 198 |
+
# Iterate over the image and create patches
|
| 199 |
+
patches = []
|
| 200 |
+
for i in range(0, height, patch_height):
|
| 201 |
+
row_patches = []
|
| 202 |
+
for j in range(0, width, patch_width):
|
| 203 |
+
patch = image[:, i : i + patch_height, j : j + patch_width]
|
| 204 |
+
row_patches.append(patch)
|
| 205 |
+
patches.append(torch.stack(row_patches))
|
| 206 |
+
return patches
|
| 207 |
+
|
| 208 |
+
|
| 209 |
class VisionEncoder(nn.Module):
|
| 210 |
|
| 211 |
def __init__(self, use_flash_attn=False):
|
|
|
|
| 213 |
|
| 214 |
self.encoder = EncoderWrapper(use_flash_attn)
|
| 215 |
self.projection = VisionProjection()
|
| 216 |
+
self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
@property
|
| 219 |
def device(self):
|
|
|
|
| 223 |
def dtype(self):
|
| 224 |
return self.projection.mlp.fc1.weight.dtype
|
| 225 |
|
| 226 |
+
def preprocess(self, image: PIL.Image.Image):
|
| 227 |
+
width, height = image.size
|
| 228 |
+
max_dim = max(width, height)
|
| 229 |
+
if max_dim < 512:
|
| 230 |
+
im_size = (378, 378)
|
| 231 |
+
else:
|
| 232 |
+
aspect_ratio = width / height
|
| 233 |
+
im_size = min(
|
| 234 |
+
self.supported_sizes,
|
| 235 |
+
key=lambda size: (
|
| 236 |
+
abs((size[1] / size[0]) - aspect_ratio),
|
| 237 |
+
abs(size[0] - width) + abs(size[1] - height),
|
| 238 |
+
),
|
| 239 |
+
)
|
| 240 |
|
| 241 |
+
return Compose(
|
| 242 |
+
[
|
| 243 |
+
Resize(size=im_size, interpolation=InterpolationMode.BICUBIC),
|
| 244 |
+
ToImage(),
|
| 245 |
+
ToDtype(torch.float32, scale=True),
|
| 246 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 247 |
+
]
|
| 248 |
+
)(image)
|
| 249 |
+
|
| 250 |
+
def forward(
|
| 251 |
+
self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor]
|
| 252 |
+
) -> torch.Tensor:
|
| 253 |
+
im_list = None
|
| 254 |
+
if isinstance(images, torch.Tensor):
|
| 255 |
+
# Input must have dimensions (B, C, H, W)
|
| 256 |
+
assert (
|
| 257 |
+
len(images.shape) == 4
|
| 258 |
+
), "Tensor input must have dimensions (B, C, H, W)"
|
| 259 |
+
im_list = list(images)
|
| 260 |
+
elif isinstance(images, PIL.Image.Image):
|
| 261 |
+
im_list = [images]
|
| 262 |
+
elif isinstance(images, list):
|
| 263 |
+
im_list = images
|
| 264 |
+
else:
|
| 265 |
+
raise ValueError(
|
| 266 |
+
"Input must be a PIL image, list of PIL images, or a tensor"
|
| 267 |
+
)
|
| 268 |
|
| 269 |
+
# Preprocess unless the images are already tensors (indicating that
|
| 270 |
+
# they have already been preprocessed)
|
| 271 |
+
if not isinstance(im_list[0], torch.Tensor):
|
| 272 |
+
im_list = [self.preprocess(im.convert("RGB")) for im in im_list]
|
| 273 |
|
| 274 |
+
patches = [create_patches(im) for im in im_list]
|
| 275 |
+
flat_patches = [patch for image_patches in patches for patch in image_patches]
|
|
|
|
| 276 |
|
| 277 |
+
# Images may be variable size, and need to be resized to a common size after
|
| 278 |
+
# creating patches.
|
| 279 |
+
resized_images = [
|
| 280 |
+
F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear")
|
| 281 |
+
for im in im_list
|
| 282 |
+
]
|
| 283 |
+
|
| 284 |
+
combined_images = torch.cat([*resized_images, *flat_patches], dim=0)
|
| 285 |
+
combined_images = combined_images.to(self.device, dtype=self.dtype)
|
| 286 |
+
|
| 287 |
+
combined_features = self.encoder(combined_images)
|
| 288 |
+
|
| 289 |
+
full_img_features = combined_features[: len(im_list)]
|
| 290 |
+
patch_features = (
|
| 291 |
+
combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27)
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# Reshape patch features back to their original structure
|
| 295 |
+
reshaped_patch_features = []
|
| 296 |
+
patch_idx = 0
|
| 297 |
+
for i, patch_set in enumerate(patches):
|
| 298 |
+
if len(patch_set) == 0:
|
| 299 |
+
reshaped_patch_features.append(
|
| 300 |
+
full_img_features[i].transpose(0, 1).view(1152, 27, 27)
|
| 301 |
+
)
|
| 302 |
+
else:
|
| 303 |
+
sample_features = []
|
| 304 |
+
for row_patches in patch_set:
|
| 305 |
+
row_len = len(row_patches)
|
| 306 |
+
row_features = patch_features[
|
| 307 |
+
patch_idx : patch_idx + row_len
|
| 308 |
+
] # row_len, T, C
|
| 309 |
+
row_features = torch.cat(
|
| 310 |
+
list(row_features), dim=2
|
| 311 |
+
) # T, C * row_len
|
| 312 |
+
patch_idx += row_len
|
| 313 |
+
sample_features.append(row_features)
|
| 314 |
+
sample_features = torch.cat(sample_features, dim=1)
|
| 315 |
+
sample_features = F.interpolate(
|
| 316 |
+
sample_features.unsqueeze(0), size=(27, 27), mode="bilinear"
|
| 317 |
+
).squeeze(0)
|
| 318 |
+
reshaped_patch_features.append(sample_features)
|
| 319 |
+
reshaped_patch_features = (
|
| 320 |
+
torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2)
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2)
|
| 324 |
+
|
| 325 |
+
return self.projection(final_features)
|