MC-LLaVA-3b / modeling_phi.py
visheratin's picture
Update new model
122865a verified
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# Copyright (c) 2022, Tri Dao, [email protected].
# Licensed under the BSD 3-Clause License.
from __future__ import annotations
import math
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast
from configuration_phi import PhiConfig
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
from flash_attn.ops.fused_dense import FusedDense
print("Using Flash Attention!")
except Exception as exc:
print(exc)
pad_input, unpad_input = None, None
FlashRotaryEmbedding = None
FlashSelfAttention, FlashCrossAttention = None, None
FusedDense = None
print("Not using Flash Attention!")
@dataclass
class InferenceParams:
"""Inference parameters passed to model to efficiently calculate
and store context during inference.
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
Args:
max_seqlen: Maximum sequence length.
max_batch_size: Maximum batch size.
seqlen_offset: Sequence length offset.
batch_size_offset: Batch size offset.
key_value_memory_dict: Key value memory dictionary.
lengths_per_sample: Lengths per sample.
"""
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
key_value_memory_dict: Dict[str, Any] = field(
default_factory=dict, metadata={"help": "Key value memory dictionary."}
)
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
class Embedding(nn.Module):
"""Token embedding with dropout."""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.wte(input_ids)
hidden_states = self.drop(hidden_states)
return hidden_states
def _apply_rotary_emb(
x: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
) -> torch.FloatTensor:
_, seqlen, _, _ = x.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
x_rot = x[:, :, :, :rotary_dim]
x_pass = x[:, :, :, rotary_dim:]
x1, x2 = x_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
return torch.cat([x_rot, x_pass], axis=-1)
def _apply_rotary_emb_kv(
kv: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
cos_k: Optional[torch.FloatTensor] = None,
sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, _, _, _ = kv.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
k_rot = kv[:, :, 0, :, :rotary_dim]
k_pass = kv[:, :, 0, :, rotary_dim:]
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
return torch.cat(
[
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
kv[:, :, 1:2, :, :],
],
axis=2,
)
def _apply_rotary_emb_qkv(
qkv: torch.FloatTensor,
cos: torch.FloatTensor,
sin: torch.FloatTensor,
cos_k: Optional[torch.FloatTensor] = None,
sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
_, seqlen, _, _, _ = qkv.shape
_, rotary_dim = cos.shape
rotary_dim *= 2
q_rot = qkv[:, :, 0, :, :rotary_dim]
q_pass = qkv[:, :, 0, :, rotary_dim:]
k_rot = qkv[:, :, 1, :, :rotary_dim]
k_pass = qkv[:, :, 1, :, rotary_dim:]
q1, q2 = q_rot.chunk(2, dim=-1)
k1, k2 = k_rot.chunk(2, dim=-1)
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
return torch.cat(
[
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
qkv[:, :, 2:3, :, :],
],
axis=2,
)
class RotaryEmbedding(nn.Module):
"""Rotary positional embedding (RoPE).
Reference:
RoFormer: Enhanced Transformer with Rotary Position Embedding.
https://arxiv.org/pdf/2104.09864.pdf.
"""
def __init__(
self,
dim: int,
base: int = 10000,
scale_base: Optional[float] = None,
pos_idx_in_fp32: bool = True,
max_position_embeddings: int = 2048,
device: Optional[str] = None,
**kwargs,
) -> None:
super().__init__()
if scale_base is not None:
raise NotImplementedError
self.dim = dim
self.base = float(base)
self.scale_base = scale_base
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.max_position_embeddings = max_position_embeddings
self.device = device
# Generate and save the inverse frequency buffer (non-trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Generate and save the scale buffer (non-trainable)
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
# Initialize cached attributes since ONNX can't rely on dynamic initialization
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
def _update_cos_sin_cache(
self,
seqlen: int,
device: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
self._seq_len_cached = seqlen
# fp32 is preferred since the output of `torch.arange` can be quite large
# and bf16 would lose a lot of precision
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# Force the scale multiplication to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: int = 0,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if (
self._seq_len_cached < qkv.shape[1] + seqlen_offset
or self._cos_cached.device != qkv.device
or self._cos_cached.dtype != qkv.dtype
or (self.training and self._cos_cached.is_inference())
):
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
if kv is None:
return _apply_rotary_emb_qkv(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
else:
q = _apply_rotary_emb(
qkv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
kv = _apply_rotary_emb_kv(
kv,
self._cos_cached[seqlen_offset:],
self._sin_cached[seqlen_offset:],
)
return q, kv
class MLP(nn.Module):
"""Multi-Layer Perceptron.
Reference:
Attention Is All You Need.
https://arxiv.org/pdf/1706.03762.pdf.
"""
def __init__(
self,
config: PretrainedConfig,
n_inner: Optional[int] = None,
act_fn: Optional[str] = None,
) -> None:
super().__init__()
act_fn = config.activation_function if act_fn is None else act_fn
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
self.fc1 = nn.Linear(config.n_embd, n_inner)
self.fc2 = nn.Linear(n_inner, config.n_embd)
self.act = ACT2FN[act_fn]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SelfAttention(nn.Module):
"""Self-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
qkv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
q, k, v = qkv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
# using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
class CrossAttention(nn.Module):
"""Cross-attention layer (compatible with PyTorch).
Reference:
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
"""
def __init__(
self,
causal: bool = True,
softmax_scale: Optional[float] = None,
attention_dropout: float = 0.0,
) -> None:
super().__init__()
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@torch.autocast("cpu", enabled=False)
@torch.autocast("cuda", enabled=False)
def forward(
self,
q: torch.FloatTensor,
kv: torch.FloatTensor,
causal: bool = None,
key_padding_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
if kv.shape[3] != q.shape[2]:
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
q = q.to(torch.float32)
k = k.to(torch.float32)
causal = self.causal if causal is None else causal
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
# using float16, which might lead to overflow
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full(
(batch_size, seqlen_k),
-10000.0,
dtype=scores.dtype,
device=scores.device,
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
causal_mask = cols > rows + seqlen_k - seqlen_q
scores = scores.masked_fill(causal_mask, -10000.0)
attention = torch.softmax(scores, dim=-1).to(v.dtype)
attention = self.drop(attention)
output = torch.einsum("bhts,bshd->bthd", attention, v)
return output
def _find_mha_dims(
config: PretrainedConfig,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
) -> Tuple[int, int]:
if n_head is None and head_dim is None:
head_dim = config.n_embd // config.n_head
n_head = config.n_head
elif n_head is None or head_dim is None:
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
if n_head_kv is None:
n_head_kv = getattr(config, "n_head_kv", None) or n_head
return n_head, n_head_kv, head_dim
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
inference_params.max_batch_size,
inference_params.max_seqlen,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
# When the current sequence length is equal to or larger than the maximum sequence length,
# we need to concatenate the current `kv` with the cached `kv` to expand its length
if sequence_end >= inference_params.max_seqlen:
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
return kv
class MHA(nn.Module):
"""Multi-head attention layer."""
def __init__(
self,
config: PretrainedConfig,
dtype: Optional[torch.dtype] = None,
device: Optional[str] = None,
rotary_dim: Optional[int] = None,
rotary_base: float = 10000.0,
rotary_scale_base: Optional[float] = None,
n_head: Optional[int] = None,
n_head_kv: Optional[int] = None,
head_dim: Optional[int] = None,
bias: bool = True,
causal: bool = True,
softmax_scale: Optional[float] = None,
layer_idx: Optional[int] = None,
return_residual: bool = False,
checkpointing: bool = True,
) -> None:
super().__init__()
# Rotary embedding
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
if self.rotary_dim > 0:
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
if rotary_cls is None:
rotary_cls = RotaryEmbedding
rotary_kwargs = {}
if rotary_cls is RotaryEmbedding:
rotary_kwargs["max_position_embeddings"] = config.n_positions
self.rotary_emb = rotary_cls(
self.rotary_dim,
base=rotary_base,
scale_base=rotary_scale_base,
device=device,
**rotary_kwargs,
)
# MLP
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
)
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
hidden_size = config.n_embd
linear_cls = FusedDense if config.fused_dense else nn.Linear
if linear_cls is None:
linear_cls = nn.Linear
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
# Attention
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
if attn_cls is None:
attn_cls = SelfAttention
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
if cross_attn_cls is None:
cross_attn_cls = CrossAttention
self.inner_attn = attn_cls(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=config.attn_pdrop,
)
self.inner_cross_attn = cross_attn_cls(
causal=causal,
softmax_scale=softmax_scale,
attention_dropout=config.attn_pdrop,
)
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
self.layer_idx = layer_idx
self.return_residual = return_residual
self.checkpointing = checkpointing
def _forward_self_attn(
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
) -> torch.FloatTensor:
qkv = self.Wqkv(x)
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
if self.rotary_dim > 0:
qkv = self.rotary_emb(qkv)
if self.flash_attn:
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
cu_seqlens, max_seqlen = None, None
if key_padding_mask is not None:
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_attn, qkv, None, cu_seqlens, max_seqlen, use_reentrant=False
)
else:
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, None, key_padding_mask, use_reentrant=False)
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
def _forward_cross_attn(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams],
key_padding_mask: Optional[torch.BoolTensor],
) -> torch.FloatTensor:
batch_size = x.shape[0]
qkv = self.Wqkv(x)
q = qkv[..., : self.n_head * self.head_dim]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = qkv[..., self.n_head * self.head_dim :]
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
causal = None if seqlen_offset == 0 else False
if self.rotary_dim > 0:
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
if past_key_values is not None:
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
if self.flash_attn:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
None,
None,
None,
None,
)
if key_padding_mask is not None:
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
if seqlen_q == 1:
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
elif seqlen_q != seqlen_k:
key_padding_mask = key_padding_mask[:, -seqlen_q:]
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
if self.checkpointing:
attn_output = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
causal,
cu_seqlens_q,
max_seqlen_q,
cu_seqlens_k,
max_seqlen_k,
use_reentrant=False,
)
else:
attn_output = self.inner_cross_attn(
q,
kv,
causal=causal,
cu_seqlens=cu_seqlens_q,
max_seqlen=max_seqlen_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_k=max_seqlen_k,
)
return (
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
if key_padding_mask is not None
else attn_output
)
if self.checkpointing:
return torch.utils.checkpoint.checkpoint(
self.inner_cross_attn,
q,
kv,
causal,
key_padding_mask,
use_reentrant=False,
)
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
def forward(
self,
x: torch.FloatTensor,
past_key_values: Optional[InferenceParams] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
if attention_mask is not None:
attention_mask = attention_mask.bool()
else:
attention_mask = None
# MHA
if self.n_head == self.n_head_kv:
if past_key_values is None:
# If `past_key_values` are not supplied, we run self-attention
attn_output = self._forward_self_attn(x, attention_mask)
else:
# If `past_key_values` are supplied, it means that we might have cached values and
# could take advantage of cross-attention
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
# MQA / GQA
else:
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
# because `q` and `kv` lengths might be different
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
output = rearrange(attn_output, "... h d -> ... (h d)")
output = self.out_proj(output)
return output if not self.return_residual else (output, x)
class ParallelBlock(nn.Module):
"""Parallel block.
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
"""
def __init__(
self,
config: PretrainedConfig,
block_idx: Optional[int] = None,
) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.block_idx = block_idx
self.mixer = MHA(config, layer_idx=block_idx)
self.mlp = MLP(config)
def forward(
self,
hidden_states: torch.FloatTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
**kwargs,
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
if isinstance(attn_outputs, tuple):
attn_outputs = attn_outputs[0]
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class CausalLMHead(nn.Module):
"""Causal Language Modeling head.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, config: PretrainedConfig) -> None:
super().__init__()
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
logits = self.linear(hidden_states).to(torch.float32)
return logits
class CausalLMLoss(nn.Module):
"""Causal Language Modeling loss.
Reference:
Improving Language Understanding by Generative Pre-Training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
"""
def __init__(self, shift_labels: bool = True) -> None:
super().__init__()
self.shift_labels = shift_labels
self.loss_fct = nn.CrossEntropyLoss()
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
if self.shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
return loss
class PhiPreTrainedModel(PreTrainedModel):
"""Phi pre-trained model."""
config_class = PhiConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["ParallelBlock"]
def __init__(self, *inputs, **kwargs) -> None:
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module) -> None:
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
**kwargs,
) -> Dict[str, Any]:
# if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
# past_key_values = InferenceParams(
# max_seqlen=self.config.n_positions,
# max_batch_size=input_ids.shape[0],
# seqlen_offset=0,
# batch_size_offset=0,
# key_value_memory_dict={},
# lengths_per_sample=None,
# )
# else:
# # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
# past_key_values.seqlen_offset = input_ids.shape[1] - 1
# input_ids = input_ids[:, -1].unsqueeze(-1)
# attention_mask = attention_mask[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
class PhiModel(PhiPreTrainedModel):
"""Phi model."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
def __init__(self, config: PhiConfig) -> None:
config.flash_attn = True
config.flash_rotary = True
super().__init__(config)
self.embd = Embedding(config)
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
self.gradient_checkpointing = True
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embd.wte
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embd.wte = new_embeddings
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
) -> torch.FloatTensor:
if input_ids is not None:
hidden_states = self.embd(input_ids)
elif inputs_embeds is not None:
hidden_states = inputs_embeds
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
for layer in self.h:
if self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer.__call__,
hidden_states,
past_key_values,
attention_mask,
use_reentrant=False,
)
else:
hidden_states = layer(
hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
)
return hidden_states
class PhiForCausalLM(PhiPreTrainedModel):
"""Phi for Causal Language Modeling."""
_keys_to_ignore_on_load_missing = [""]
_keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
supports_gradient_checkpointing = True
_no_split_modules = ["ParallelBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, config: PhiConfig) -> None:
super().__init__(config)
self.transformer = PhiModel(config)
self.lm_head = CausalLMHead(config)
self.loss = CausalLMLoss()
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head.linear
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.lm_head.linear = new_embeddings
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
attention_mask: Optional[torch.BoolTensor] = None,
labels: Optional[torch.LongTensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
hidden_states = self.transformer(input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss(lm_logits, labels)
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)