first commit
Browse files- .gitattributes +1 -0
- Bhadawari_sample.jpg +0 -0
- Gir_sample.jpg +0 -0
- Jaffarbadi_sample.png +3 -0
- README.md +156 -0
- config.json +39 -0
- example_usage.py +176 -0
- metadata.json +31 -0
- model.onnx +3 -0
- prototypes.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
Jaffarbadi_sample.png filter=lfs diff=lfs merge=lfs -text
|
Bhadawari_sample.jpg
ADDED
|
Gir_sample.jpg
ADDED
|
Jaffarbadi_sample.png
ADDED
|
Git LFS Details
|
README.md
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- cattle-breed-classification
|
| 5 |
+
- buffalo-breed-classification
|
| 6 |
+
- livestock-recognition
|
| 7 |
+
- agriculture
|
| 8 |
+
- computer-vision
|
| 9 |
+
- onnx
|
| 10 |
+
- resnet50
|
| 11 |
+
pipeline_tag: image-classification
|
| 12 |
+
base_model: microsoft/resnet-50
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Cattle & Buffalo Breed Classification Model
|
| 16 |
+
|
| 17 |
+
This model classifies cattle and buffalo breeds using computer vision. It's based on ResNet-50 architecture and trained to recognize 10 different breeds.
|
| 18 |
+
|
| 19 |
+
## Model Description
|
| 20 |
+
|
| 21 |
+
- **Model Type**: Feature extraction + similarity matching
|
| 22 |
+
- **Architecture**: ResNet-50 backbone with L2 normalization
|
| 23 |
+
- **Format**: ONNX (89.6MB)
|
| 24 |
+
- **Input**: RGB images (224x224)
|
| 25 |
+
- **Output**: 2048-dimensional feature vectors
|
| 26 |
+
- **Classification**: Cosine similarity with breed prototypes
|
| 27 |
+
|
| 28 |
+
## Supported Breeds
|
| 29 |
+
|
| 30 |
+
### Buffalo Breeds (5)
|
| 31 |
+
- Bhadawari
|
| 32 |
+
- Jaffarbadi
|
| 33 |
+
- Mehsana
|
| 34 |
+
- Murrah
|
| 35 |
+
- Surti
|
| 36 |
+
|
| 37 |
+
### Cattle Breeds (5)
|
| 38 |
+
- Gir
|
| 39 |
+
- Kankrej
|
| 40 |
+
- Ongole
|
| 41 |
+
- Sahiwal
|
| 42 |
+
- Tharparkar
|
| 43 |
+
|
| 44 |
+
## Usage
|
| 45 |
+
|
| 46 |
+
### Using ONNX Runtime
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
import onnxruntime as ort
|
| 50 |
+
import numpy as np
|
| 51 |
+
from PIL import Image
|
| 52 |
+
import json
|
| 53 |
+
|
| 54 |
+
# Load model
|
| 55 |
+
session = ort.InferenceSession('model.onnx')
|
| 56 |
+
|
| 57 |
+
# Load breed prototypes
|
| 58 |
+
with open('prototypes.json', 'r') as f:
|
| 59 |
+
prototypes = json.load(f)
|
| 60 |
+
|
| 61 |
+
# Preprocess image
|
| 62 |
+
def preprocess_image(image_path):
|
| 63 |
+
from torchvision import transforms
|
| 64 |
+
|
| 65 |
+
transform = transforms.Compose([
|
| 66 |
+
transforms.Resize(256),
|
| 67 |
+
transforms.CenterCrop(224),
|
| 68 |
+
transforms.ToTensor(),
|
| 69 |
+
transforms.Normalize(
|
| 70 |
+
mean=[0.485, 0.456, 0.406],
|
| 71 |
+
std=[0.229, 0.224, 0.225]
|
| 72 |
+
)
|
| 73 |
+
])
|
| 74 |
+
|
| 75 |
+
image = Image.open(image_path).convert('RGB')
|
| 76 |
+
tensor = transform(image).unsqueeze(0)
|
| 77 |
+
return tensor.numpy()
|
| 78 |
+
|
| 79 |
+
# Predict breed
|
| 80 |
+
def predict_breed(image_path):
|
| 81 |
+
# Get features
|
| 82 |
+
input_data = preprocess_image(image_path)
|
| 83 |
+
features = session.run(None, {'input': input_data})[0][0]
|
| 84 |
+
|
| 85 |
+
# Calculate similarities
|
| 86 |
+
similarities = {}
|
| 87 |
+
for breed, prototype in prototypes['prototypes'].items():
|
| 88 |
+
similarity = np.dot(features, prototype)
|
| 89 |
+
similarities[breed] = float(similarity)
|
| 90 |
+
|
| 91 |
+
# Get top prediction
|
| 92 |
+
predicted_breed = max(similarities, key=similarities.get)
|
| 93 |
+
confidence = similarities[predicted_breed]
|
| 94 |
+
|
| 95 |
+
return predicted_breed, confidence, similarities
|
| 96 |
+
|
| 97 |
+
# Example usage
|
| 98 |
+
breed, confidence, all_scores = predict_breed('path/to/image.jpg')
|
| 99 |
+
print(f"Predicted breed: {breed}")
|
| 100 |
+
print(f"Confidence: {confidence:.4f}")
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Integration with Mobile Apps
|
| 104 |
+
|
| 105 |
+
```javascript
|
| 106 |
+
// React Native example
|
| 107 |
+
import { ONNX } from 'onnxjs-react-native';
|
| 108 |
+
|
| 109 |
+
const model = new ONNX.InferenceSession();
|
| 110 |
+
await model.loadModel('path/to/model.onnx');
|
| 111 |
+
|
| 112 |
+
const prediction = await model.run([preprocessedImageTensor]);
|
| 113 |
+
// Process with prototypes for final classification
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
## Model Performance
|
| 117 |
+
|
| 118 |
+
- **Inference Time**: ~45-50ms (CPU)
|
| 119 |
+
- **Model Size**: 89.6MB
|
| 120 |
+
- **Accuracy**: Optimized for livestock breed recognition
|
| 121 |
+
- **Platforms**: Cross-platform (ONNX Runtime support)
|
| 122 |
+
|
| 123 |
+
## Files Included
|
| 124 |
+
|
| 125 |
+
- `model.onnx`: The trained ONNX model
|
| 126 |
+
- `prototypes.json`: Breed prototype vectors for classification
|
| 127 |
+
- `config.json`: Model configuration and metadata
|
| 128 |
+
- `sample_images/`: Example images for testing
|
| 129 |
+
|
| 130 |
+
## Technical Details
|
| 131 |
+
|
| 132 |
+
- **Feature Extraction**: ResNet-50 backbone → 2048-dim features
|
| 133 |
+
- **Normalization**: L2 normalization applied to features
|
| 134 |
+
- **Classification**: Cosine similarity with pre-computed breed prototypes
|
| 135 |
+
- **Preprocessing**: ImageNet-style normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 136 |
+
|
| 137 |
+
## License
|
| 138 |
+
|
| 139 |
+
Apache 2.0
|
| 140 |
+
|
| 141 |
+
## Citation
|
| 142 |
+
|
| 143 |
+
If you use this model, please cite:
|
| 144 |
+
```
|
| 145 |
+
@misc{cattle-breed-classifier,
|
| 146 |
+
title={Cattle and Buffalo Breed Classification Model},
|
| 147 |
+
author={Your Name},
|
| 148 |
+
year={2025},
|
| 149 |
+
publisher={Hugging Face},
|
| 150 |
+
url={https://huggingface.co/your-username/cattle-breed-classifier}
|
| 151 |
+
}
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
## Contact
|
| 155 |
+
|
| 156 |
+
For questions or issues, please open an issue in the model repository.
|
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": ["CustomFeatureExtractor"],
|
| 3 |
+
"model_type": "custom",
|
| 4 |
+
"task": "image-classification",
|
| 5 |
+
"framework": "onnx",
|
| 6 |
+
"pipeline_tag": "image-classification",
|
| 7 |
+
"license": "apache-2.0",
|
| 8 |
+
"tags": [
|
| 9 |
+
"cattle-breed-classification",
|
| 10 |
+
"buffalo-breed-classification",
|
| 11 |
+
"livestock-recognition",
|
| 12 |
+
"agriculture",
|
| 13 |
+
"computer-vision",
|
| 14 |
+
"onnx",
|
| 15 |
+
"resnet50"
|
| 16 |
+
],
|
| 17 |
+
"base_model": "microsoft/resnet-50",
|
| 18 |
+
"num_classes": 10,
|
| 19 |
+
"breeds": [
|
| 20 |
+
"Bhadawari",
|
| 21 |
+
"Gir",
|
| 22 |
+
"Jaffarbadi",
|
| 23 |
+
"Kankrej",
|
| 24 |
+
"Mehsana",
|
| 25 |
+
"Murrah",
|
| 26 |
+
"Ongole",
|
| 27 |
+
"Sahiwal",
|
| 28 |
+
"Surti",
|
| 29 |
+
"Tharparkar"
|
| 30 |
+
],
|
| 31 |
+
"input_size": [224, 224],
|
| 32 |
+
"feature_dim": 2048,
|
| 33 |
+
"preprocessing": {
|
| 34 |
+
"image_mean": [0.485, 0.456, 0.406],
|
| 35 |
+
"image_std": [0.229, 0.224, 0.225],
|
| 36 |
+
"size": 256,
|
| 37 |
+
"crop_size": 224
|
| 38 |
+
}
|
| 39 |
+
}
|
example_usage.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hugging Face Model Hub Integration Example
|
| 3 |
+
==========================================
|
| 4 |
+
|
| 5 |
+
This script demonstrates how to use the cattle breed classification model
|
| 6 |
+
from Hugging Face Model Hub.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import onnxruntime as ort
|
| 10 |
+
import numpy as np
|
| 11 |
+
import json
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from torchvision import transforms
|
| 14 |
+
import requests
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
import os
|
| 17 |
+
|
| 18 |
+
class CattleBreedClassifier:
|
| 19 |
+
def __init__(self, model_name="your-username/cattle-breed-classifier"):
|
| 20 |
+
"""
|
| 21 |
+
Initialize the classifier by downloading model files from Hugging Face
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
model_name: HuggingFace model repository name
|
| 25 |
+
"""
|
| 26 |
+
self.model_name = model_name
|
| 27 |
+
self.session = None
|
| 28 |
+
self.prototypes = None
|
| 29 |
+
self.metadata = None
|
| 30 |
+
|
| 31 |
+
# Download and load model files
|
| 32 |
+
self._download_model_files()
|
| 33 |
+
self._load_model()
|
| 34 |
+
self._load_prototypes()
|
| 35 |
+
|
| 36 |
+
def _download_model_files(self):
|
| 37 |
+
"""Download model files from Hugging Face Hub"""
|
| 38 |
+
print("📥 Downloading model files from Hugging Face...")
|
| 39 |
+
|
| 40 |
+
# Download ONNX model
|
| 41 |
+
self.model_path = hf_hub_download(
|
| 42 |
+
repo_id=self.model_name,
|
| 43 |
+
filename="model.onnx"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Download prototypes
|
| 47 |
+
self.prototypes_path = hf_hub_download(
|
| 48 |
+
repo_id=self.model_name,
|
| 49 |
+
filename="prototypes.json"
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Download metadata
|
| 53 |
+
self.metadata_path = hf_hub_download(
|
| 54 |
+
repo_id=self.model_name,
|
| 55 |
+
filename="metadata.json"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
print("✅ Model files downloaded successfully!")
|
| 59 |
+
|
| 60 |
+
def _load_model(self):
|
| 61 |
+
"""Load the ONNX model"""
|
| 62 |
+
self.session = ort.InferenceSession(self.model_path)
|
| 63 |
+
print("✅ ONNX model loaded")
|
| 64 |
+
|
| 65 |
+
def _load_prototypes(self):
|
| 66 |
+
"""Load breed prototypes"""
|
| 67 |
+
with open(self.prototypes_path, 'r') as f:
|
| 68 |
+
self.prototypes = json.load(f)
|
| 69 |
+
|
| 70 |
+
with open(self.metadata_path, 'r') as f:
|
| 71 |
+
self.metadata = json.load(f)
|
| 72 |
+
|
| 73 |
+
print(f"✅ Loaded prototypes for {len(self.prototypes['prototypes'])} breeds")
|
| 74 |
+
|
| 75 |
+
def preprocess_image(self, image_input):
|
| 76 |
+
"""
|
| 77 |
+
Preprocess image for model inference
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
image_input: PIL Image, numpy array, or file path
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
numpy.ndarray: Preprocessed image tensor
|
| 84 |
+
"""
|
| 85 |
+
# Handle different input types
|
| 86 |
+
if isinstance(image_input, str):
|
| 87 |
+
image = Image.open(image_input).convert('RGB')
|
| 88 |
+
elif isinstance(image_input, np.ndarray):
|
| 89 |
+
image = Image.fromarray(image_input).convert('RGB')
|
| 90 |
+
else:
|
| 91 |
+
image = image_input.convert('RGB')
|
| 92 |
+
|
| 93 |
+
# Apply preprocessing
|
| 94 |
+
transform = transforms.Compose([
|
| 95 |
+
transforms.Resize(256),
|
| 96 |
+
transforms.CenterCrop(224),
|
| 97 |
+
transforms.ToTensor(),
|
| 98 |
+
transforms.Normalize(
|
| 99 |
+
mean=[0.485, 0.456, 0.406],
|
| 100 |
+
std=[0.229, 0.224, 0.225]
|
| 101 |
+
)
|
| 102 |
+
])
|
| 103 |
+
|
| 104 |
+
tensor = transform(image).unsqueeze(0)
|
| 105 |
+
return tensor.numpy()
|
| 106 |
+
|
| 107 |
+
def predict(self, image_input, return_all_scores=False):
|
| 108 |
+
"""
|
| 109 |
+
Predict cattle/buffalo breed from image
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
image_input: Image input (PIL Image, numpy array, or file path)
|
| 113 |
+
return_all_scores: Whether to return scores for all breeds
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
dict: Prediction results
|
| 117 |
+
"""
|
| 118 |
+
# Preprocess image
|
| 119 |
+
input_data = self.preprocess_image(image_input)
|
| 120 |
+
|
| 121 |
+
# Run inference
|
| 122 |
+
features = self.session.run(None, {'input': input_data})[0][0]
|
| 123 |
+
|
| 124 |
+
# Calculate similarities with all breed prototypes
|
| 125 |
+
similarities = {}
|
| 126 |
+
for breed, prototype in self.prototypes['prototypes'].items():
|
| 127 |
+
similarity = np.dot(features, np.array(prototype))
|
| 128 |
+
similarities[breed] = float(similarity)
|
| 129 |
+
|
| 130 |
+
# Get top prediction
|
| 131 |
+
predicted_breed = max(similarities, key=similarities.get)
|
| 132 |
+
confidence = similarities[predicted_breed]
|
| 133 |
+
|
| 134 |
+
# Determine animal type
|
| 135 |
+
buffalo_breeds = ['Bhadawari', 'Jaffarbadi', 'Mehsana', 'Murrah', 'Surti']
|
| 136 |
+
animal_type = 'Buffalo' if predicted_breed in buffalo_breeds else 'Cattle'
|
| 137 |
+
|
| 138 |
+
result = {
|
| 139 |
+
'predicted_breed': predicted_breed,
|
| 140 |
+
'confidence': confidence,
|
| 141 |
+
'animal_type': animal_type
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
if return_all_scores:
|
| 145 |
+
result['all_scores'] = similarities
|
| 146 |
+
|
| 147 |
+
return result
|
| 148 |
+
|
| 149 |
+
# Example usage
|
| 150 |
+
def main():
|
| 151 |
+
# Initialize classifier (will download model from Hugging Face)
|
| 152 |
+
classifier = CattleBreedClassifier("your-username/cattle-breed-classifier")
|
| 153 |
+
|
| 154 |
+
# Example 1: Predict from local image
|
| 155 |
+
image_path = "path/to/your/image.jpg"
|
| 156 |
+
if os.path.exists(image_path):
|
| 157 |
+
result = classifier.predict(image_path, return_all_scores=True)
|
| 158 |
+
|
| 159 |
+
print(f"\n🐄 Prediction Results:")
|
| 160 |
+
print(f"Animal Type: {result['animal_type']}")
|
| 161 |
+
print(f"Predicted Breed: {result['predicted_breed']}")
|
| 162 |
+
print(f"Confidence: {result['confidence']:.4f}")
|
| 163 |
+
|
| 164 |
+
print(f"\n📊 All Breed Scores:")
|
| 165 |
+
for breed, score in sorted(result['all_scores'].items(),
|
| 166 |
+
key=lambda x: x[1], reverse=True):
|
| 167 |
+
print(f" {breed}: {score:.4f}")
|
| 168 |
+
|
| 169 |
+
# Example 2: Predict from PIL Image
|
| 170 |
+
from PIL import Image
|
| 171 |
+
image = Image.open(image_path)
|
| 172 |
+
result = classifier.predict(image)
|
| 173 |
+
print(f"\nDirect PIL prediction: {result['predicted_breed']} ({result['confidence']:.4f})")
|
| 174 |
+
|
| 175 |
+
if __name__ == "__main__":
|
| 176 |
+
main()
|
metadata.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "resnet50",
|
| 3 |
+
"feature_dim": 2048,
|
| 4 |
+
"input": {
|
| 5 |
+
"size": [3, 224, 224],
|
| 6 |
+
"mean": [0.485, 0.456, 0.406],
|
| 7 |
+
"std": [0.229, 0.224, 0.225]
|
| 8 |
+
},
|
| 9 |
+
"embedding_norm": "l2",
|
| 10 |
+
"similarity": "cosine",
|
| 11 |
+
"optimization_type": "maximum_10breed_near_perfect",
|
| 12 |
+
"breeds": [
|
| 13 |
+
"Bhadawari",
|
| 14 |
+
"Gir",
|
| 15 |
+
"Jaffarbadi",
|
| 16 |
+
"Kankrej",
|
| 17 |
+
"Mehsana",
|
| 18 |
+
"Murrah",
|
| 19 |
+
"Ongole",
|
| 20 |
+
"Sahiwal",
|
| 21 |
+
"Surti",
|
| 22 |
+
"Tharparkar"
|
| 23 |
+
],
|
| 24 |
+
"buffalo_breeds": ["Bhadawari", "Jaffarbadi", "Mehsana", "Murrah", "Surti"],
|
| 25 |
+
"cattle_breeds": ["Gir", "Kankrej", "Ongole", "Sahiwal", "Tharparkar"],
|
| 26 |
+
"total_breeds": 10,
|
| 27 |
+
"breed_types": {
|
| 28 |
+
"buffalo_count": 5,
|
| 29 |
+
"cattle_count": 5
|
| 30 |
+
}
|
| 31 |
+
}
|
model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a39d75b315e0abfe9e8ab91c119207f4a649c8d0ddb20d92d5f9b5b77142d3af
|
| 3 |
+
size 93957547
|
prototypes.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|