""" Hugging Face Model Hub Integration Example ========================================== This script demonstrates how to use the cattle breed classification model from Hugging Face Model Hub. """ import onnxruntime as ort import numpy as np import json from PIL import Image from torchvision import transforms import requests from huggingface_hub import hf_hub_download import os class CattleBreedClassifier: def __init__(self, model_name="your-username/cattle-breed-classifier"): """ Initialize the classifier by downloading model files from Hugging Face Args: model_name: HuggingFace model repository name """ self.model_name = model_name self.session = None self.prototypes = None self.metadata = None # Download and load model files self._download_model_files() self._load_model() self._load_prototypes() def _download_model_files(self): """Download model files from Hugging Face Hub""" print("šŸ“„ Downloading model files from Hugging Face...") # Download ONNX model self.model_path = hf_hub_download( repo_id=self.model_name, filename="model.onnx" ) # Download prototypes self.prototypes_path = hf_hub_download( repo_id=self.model_name, filename="prototypes.json" ) # Download metadata self.metadata_path = hf_hub_download( repo_id=self.model_name, filename="metadata.json" ) print("āœ… Model files downloaded successfully!") def _load_model(self): """Load the ONNX model""" self.session = ort.InferenceSession(self.model_path) print("āœ… ONNX model loaded") def _load_prototypes(self): """Load breed prototypes""" with open(self.prototypes_path, 'r') as f: self.prototypes = json.load(f) with open(self.metadata_path, 'r') as f: self.metadata = json.load(f) print(f"āœ… Loaded prototypes for {len(self.prototypes['prototypes'])} breeds") def preprocess_image(self, image_input): """ Preprocess image for model inference Args: image_input: PIL Image, numpy array, or file path Returns: numpy.ndarray: Preprocessed image tensor """ # Handle different input types if isinstance(image_input, str): image = Image.open(image_input).convert('RGB') elif isinstance(image_input, np.ndarray): image = Image.fromarray(image_input).convert('RGB') else: image = image_input.convert('RGB') # Apply preprocessing transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ]) tensor = transform(image).unsqueeze(0) return tensor.numpy() def predict(self, image_input, return_all_scores=False): """ Predict cattle/buffalo breed from image Args: image_input: Image input (PIL Image, numpy array, or file path) return_all_scores: Whether to return scores for all breeds Returns: dict: Prediction results """ # Preprocess image input_data = self.preprocess_image(image_input) # Run inference features = self.session.run(None, {'input': input_data})[0][0] # Calculate similarities with all breed prototypes similarities = {} for breed, prototype in self.prototypes['prototypes'].items(): similarity = np.dot(features, np.array(prototype)) similarities[breed] = float(similarity) # Get top prediction predicted_breed = max(similarities, key=similarities.get) confidence = similarities[predicted_breed] # Determine animal type buffalo_breeds = ['Bhadawari', 'Jaffarbadi', 'Mehsana', 'Murrah', 'Surti'] animal_type = 'Buffalo' if predicted_breed in buffalo_breeds else 'Cattle' result = { 'predicted_breed': predicted_breed, 'confidence': confidence, 'animal_type': animal_type } if return_all_scores: result['all_scores'] = similarities return result # Example usage def main(): # Initialize classifier (will download model from Hugging Face) classifier = CattleBreedClassifier("your-username/cattle-breed-classifier") # Example 1: Predict from local image image_path = "path/to/your/image.jpg" if os.path.exists(image_path): result = classifier.predict(image_path, return_all_scores=True) print(f"\nšŸ„ Prediction Results:") print(f"Animal Type: {result['animal_type']}") print(f"Predicted Breed: {result['predicted_breed']}") print(f"Confidence: {result['confidence']:.4f}") print(f"\nšŸ“Š All Breed Scores:") for breed, score in sorted(result['all_scores'].items(), key=lambda x: x[1], reverse=True): print(f" {breed}: {score:.4f}") # Example 2: Predict from PIL Image from PIL import Image image = Image.open(image_path) result = classifier.predict(image) print(f"\nDirect PIL prediction: {result['predicted_breed']} ({result['confidence']:.4f})") if __name__ == "__main__": main()