Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```yaml
|
2 |
+
language: vi
|
3 |
+
tags:
|
4 |
+
- hate-speech-detection
|
5 |
+
- vietnamese
|
6 |
+
- transformer
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- visolex/ViHOS
|
10 |
+
metrics:
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
model-index:
|
15 |
+
- name: visobert-hsd-span
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
type: token-classification
|
19 |
+
name: Hate Speech Span Detection
|
20 |
+
dataset:
|
21 |
+
name: ViHOS
|
22 |
+
type: custom
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: <INSERT_PRECISION>
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: <INSERT_RECALL>
|
30 |
+
- name: F1 Score
|
31 |
+
type: f1
|
32 |
+
value: <INSERT_F1>
|
33 |
+
base_model:
|
34 |
+
- uitnlp/visobert
|
35 |
+
pipeline_tag: token-classification
|
36 |
+
```
|
37 |
+
|
38 |
+
# ViSoBERT-HSD-Span
|
39 |
+
|
40 |
+
This model is fine-tuned from [`uitnlp/visobert`](https://huggingface.co/uitnlp/visobert) on the **visolex/ViHOS** dataset for span-level hate/offensive detection in Vietnamese comments.
|
41 |
+
|
42 |
+
## Model Details
|
43 |
+
|
44 |
+
* **Base Model**: [`uitnlp/visobert`](https://huggingface.co/uitnlp/visobert)
|
45 |
+
* **Dataset**: [visolex/ViHOS](https://huggingface.co/datasets/visolex/ViHOS) citeturn1view0
|
46 |
+
* **Fine-tuning**: HuggingFace Transformers
|
47 |
+
|
48 |
+
### Hyperparameters
|
49 |
+
|
50 |
+
* Batch size: `16`
|
51 |
+
* Learning rate: `5e-5`
|
52 |
+
* Epochs: `100`
|
53 |
+
* Max sequence length: `128`
|
54 |
+
* Early stopping: `5`
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
```python
|
59 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained("visolex/visobert-hsd-span")
|
62 |
+
model = AutoModelForTokenClassification.from_pretrained("visolex/visobert-hsd-span")
|
63 |
+
|
64 |
+
text = "Nói cái lol . t thấy thô tục vl"
|
65 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = model(**inputs)
|
68 |
+
logits = outputs.logits # [batch, seq_len, num_labels]
|
69 |
+
# For binary: use sigmoid, for multi-class: use softmax+argmax
|
70 |
+
probs = torch.sigmoid(logits)
|
71 |
+
preds = (probs > 0.5).long().squeeze().tolist() # [seq_len]
|
72 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
73 |
+
|
74 |
+
span_labels = [p[0] for p in preds]
|
75 |
+
|
76 |
+
# Lấy token có nhãn span = 1, loại bỏ <s> và </s> nếu muốn
|
77 |
+
span_tokens = [token for token, label in zip(tokens, span_labels) if label == 1 and token not in ['<s>', '</s>']]
|
78 |
+
|
79 |
+
print("Span tokens:", span_tokens)
|
80 |
+
print("Span text:", tokenizer.convert_tokens_to_string(span_tokens))
|
81 |
+
```
|