EC2 Default User
commited on
Commit
·
bb8e52c
0
Parent(s):
the first commit
Browse files- .gitattributes +35 -0
- README.md +134 -0
- config.json +35 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tf_model.h5 +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +12 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
arXiv: 2403.01308
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text2text-generation
|
7 |
+
widget:
|
8 |
+
- text: >-
|
9 |
+
Soru yarat: cevap: Alan Mathison Turing İngiliz matematikçi, bilgisayar
|
10 |
+
bilimcisi ve kriptolog. II. Dünya Savaşı sırasında Alman şifrelerinin
|
11 |
+
kırılmasında çok önemli bir rol oynadığı için savaş kahramanı sayılmıştır.
|
12 |
+
Ayrıca Manchester Üniversitesi'nde çalıştığı yıllarda, Turing makinesi
|
13 |
+
denilen algoritma tanımı ile modern bilgisayarların kavramsal temelini
|
14 |
+
atmıştır.
|
15 |
+
example_title: Question generation
|
16 |
+
- text: >-
|
17 |
+
Soru cevapla: Turing makinesi denilen algoritma tanımı ile modern
|
18 |
+
bilgisayarların kavramsal temelini atan bilim insanı kimdir? kaynak: Alan
|
19 |
+
Mathison Turing İngiliz matematikçi, bilgisayar bilimcisi ve kriptolog. II.
|
20 |
+
Dünya Savaşı sırasında Alman şifrelerinin kırılmasında çok önemli bir rol
|
21 |
+
oynadığı için savaş kahramanı sayılmıştır. Ayrıca Manchester
|
22 |
+
Üniversitesi'nde çalıştığı yıllarda, Turing makinesi denilen algoritma
|
23 |
+
tanımı ile modern bilgisayarların kavramsal temelini atmıştır.
|
24 |
+
example_title: Question answering
|
25 |
+
- text: >-
|
26 |
+
yanıtları çıkar: Alan Mathison Turing İngiliz matematikçi, bilgisayar
|
27 |
+
bilimcisi ve kriptolog. II. Dünya Savaşı sırasında Alman şifrelerinin
|
28 |
+
kırılmasında çok önemli bir rol oynadığı için savaş kahramanı sayılmıştır.
|
29 |
+
<hl> Ayrıca Manchester Üniversitesi'nde çalıştığı yıllarda, Turing makinesi
|
30 |
+
denilen algoritma tanımı ile modern bilgisayarların kavramsal temelini
|
31 |
+
atmıştır <hl> .
|
32 |
+
example_title: Answer Extraction
|
33 |
+
license: cc-by-nc-sa-4.0
|
34 |
+
---
|
35 |
+
# VBART Model Card
|
36 |
+
|
37 |
+
## Model Description
|
38 |
+
|
39 |
+
This repo contains pretrained tensorflow and safetensors weights of VBART the first sequence-to-sequence model trained in Turkish corpora from scratch. VBART was trained by VNGRS in February 2023.
|
40 |
+
The model is capable of text transformation tasks such as summarization, paraphrasing, and title generation with fine-tuning.
|
41 |
+
|
42 |
+
This model overperforms its multilingual counterparts, albeit being much smaller than other implementations.
|
43 |
+
|
44 |
+
This repository contains fine-tuned weights of VBART for question-answering and generation tasks described in the [paper](https://doi.org/10.55730/1300-0632.3914).
|
45 |
+
|
46 |
+
- **Developed by:** [VNGRS-AI](https://vngrs.com/ai/)
|
47 |
+
- **Model type:** Transformer encoder-decoder based on mBART architecture
|
48 |
+
- **Language(s) (NLP):** Turkish
|
49 |
+
- **License:** CC BY-NC-SA 4.0
|
50 |
+
- **Finetuned from:** VBART-Large
|
51 |
+
- **Paper:** [arXiv](https://arxiv.org/abs/2403.01308)
|
52 |
+
## How to Get Started with the Model
|
53 |
+
```python
|
54 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
55 |
+
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained("vngrs-ai/VBART-Large-QAQG",
|
57 |
+
model_input_names=['input_ids', 'attention_mask'])
|
58 |
+
# Uncomment the device_map kwarg and delete the closing bracket to infer model in gpu
|
59 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("vngrs-ai/VBART-Large-QAQG")#, device_map="auto")
|
60 |
+
|
61 |
+
context="..."
|
62 |
+
question="..."
|
63 |
+
highlighted_context="..."
|
64 |
+
|
65 |
+
# Prompt for question generation
|
66 |
+
qg_prompt = f'Soru yarat: cevap: {context}'
|
67 |
+
# Prompt for question answering
|
68 |
+
qa_prompt = f'Soru cevapla: {question} kaynak: {context}'
|
69 |
+
# Prompt for answer extraction
|
70 |
+
ae_prompt = f'yanıtları çıkar: {highlighted_context}'
|
71 |
+
|
72 |
+
|
73 |
+
# text_input = f"{qg_prompt} {context} "
|
74 |
+
token_input = tokenizer(ae_prompt, return_tensors="pt")#.to('cuda')
|
75 |
+
|
76 |
+
# token_input
|
77 |
+
outputs = model.generate(**token_input)
|
78 |
+
print(tokenizer.decode(outputs[0]))
|
79 |
+
```
|
80 |
+
|
81 |
+
## Training Details
|
82 |
+
### Fine-tuning prompt
|
83 |
+
This model is trained on three tasks:
|
84 |
+
- question answering: Answer a question with given context. Prompted with
|
85 |
+
```Soru cevapla: <question> kaynak: <context>```
|
86 |
+
- question generation: Generate a question from a given context. Will accept a highlight token (`<hl>`, without spaces) to specify the answer to the question generated. Prompted with
|
87 |
+
```Soru yarat: <context>```
|
88 |
+
- answer extraction: Will extract possible answers from a highlighted range (using the same highlight token). Prompted with
|
89 |
+
``` yanıtları çıkar: <context with highlighted parts>```
|
90 |
+
|
91 |
+
### Training Data
|
92 |
+
The base model is pre-trained on cleaned and filtered versions of a mixed corpus made of Turkish parts of [OSCAR-2201](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201) and [mC4](https://huggingface.co/datasets/mc4) datasets. These datasets consist of documents of unstructured web crawl data. More information about the dataset can be found on their respective pages. Data is filtered using a set of heuristics and certain rules, explained in the appendix of our [paper](https://arxiv.org/abs/2403.01308).
|
93 |
+
|
94 |
+
The fine-tuning dataset is [TQuAD](https://github.com/obss/turkish-question-generation), which has two versions. We have concatenated them and dropped duplicate samples. More information about this process can be found in Appendix B of our [paper](https://arxiv.org/abs/2403.01308).
|
95 |
+
|
96 |
+
### Limitations
|
97 |
+
This model is fine-tuned for question-answering and question-generation tasks with specific prompts. It is not intended to be used in any other case and can not be fine-tuned to any other task with full performance of the base model. It is also not guaranteed that this model will work without specified prompts.
|
98 |
+
|
99 |
+
### Training Procedure
|
100 |
+
Pretrained for 30 days and for a total of 708B tokens. Finetuned for 5 epoch.
|
101 |
+
#### Hardware
|
102 |
+
- **GPUs**: 8 x Nvidia A100-80 GB
|
103 |
+
#### Software
|
104 |
+
- Tensorflow
|
105 |
+
#### Hyperparameters
|
106 |
+
##### Pretraining
|
107 |
+
- **Training regime:** fp16 mixed precision
|
108 |
+
- **Training objective**: Sentence permutation and span masking (using mask lengths sampled from Poisson distribution λ=3.5, masking 30% of tokens)
|
109 |
+
- **Optimizer** : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6)
|
110 |
+
- **Scheduler**: Linear decay scheduler (20,000 warm-up steps)
|
111 |
+
- **Dropout**: 0.1 (dropped to 0.05 and then to 0 in the last 165k and 205 steps, respectively)
|
112 |
+
- **Initial Learning rate**: 5e-6
|
113 |
+
- **Training tokens**: 708B
|
114 |
+
|
115 |
+
##### Fine-tuning
|
116 |
+
- **Training regime:** fp16 mixed precision
|
117 |
+
- **Optimizer** : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6)
|
118 |
+
- **Scheduler**: Linear decay scheduler
|
119 |
+
- **Dropout**: 0.1
|
120 |
+
- **Learning rate**: 5e-5
|
121 |
+
- **Fine-tune epochs**: 5
|
122 |
+
|
123 |
+
#### Metrics
|
124 |
+

|
125 |
+
|
126 |
+
## Citation
|
127 |
+
```
|
128 |
+
@article{turker2024vbart,
|
129 |
+
title={VBART: The Turkish LLM},
|
130 |
+
author={Turker, Meliksah and Ari, Erdi and Han, Aydin},
|
131 |
+
journal={arXiv preprint arXiv:2403.01308},
|
132 |
+
year={2024}
|
133 |
+
}
|
134 |
+
```
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tfhf_model",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"architectures": [
|
6 |
+
"MBartForConditionalGeneration"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"bos_token_id": 2,
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_model": 1024,
|
12 |
+
"decoder_attention_heads": 16,
|
13 |
+
"decoder_ffn_dim": 4096,
|
14 |
+
"decoder_layerdrop": 0.0,
|
15 |
+
"decoder_layers": 12,
|
16 |
+
"decoder_start_token_id": 2,
|
17 |
+
"dropout": 0.1,
|
18 |
+
"encoder_attention_heads": 16,
|
19 |
+
"encoder_ffn_dim": 4096,
|
20 |
+
"encoder_layerdrop": 0.0,
|
21 |
+
"encoder_layers": 12,
|
22 |
+
"eos_token_id": 3,
|
23 |
+
"forced_eos_token_id": 3,
|
24 |
+
"init_std": 0.02,
|
25 |
+
"is_encoder_decoder": true,
|
26 |
+
"max_position_embeddings": 1024,
|
27 |
+
"model_type": "mbart",
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"scale_embedding": false,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.38.2",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 32000
|
35 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"decoder_start_token_id": 2,
|
5 |
+
"eos_token_id": 3,
|
6 |
+
"forced_eos_token_id": 3,
|
7 |
+
"pad_token_id": 0,
|
8 |
+
"transformers_version": "4.38.2"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a5f5db735b604098beb9b331361b42a143ef0944f1f3ee2742e5951a3ffc257
|
3 |
+
size 1550557280
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<BOS>",
|
3 |
+
"eos_token": "<EOS>",
|
4 |
+
"mask_token": "<MASK>",
|
5 |
+
"pad_token": "<PAD>",
|
6 |
+
"unk_token": "<UNK>"
|
7 |
+
}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c30087012e88164bda070f62b685d9c0e39d55f362ae0252965a33dc6ede3e0
|
3 |
+
size 1551059288
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<BOS>",
|
3 |
+
"clean_up_tokenization_spaces": false,
|
4 |
+
"eos_token": "<EOS>",
|
5 |
+
"mask_token": "<MASK>",
|
6 |
+
"model_max_length": 1024,
|
7 |
+
"pad_token": "<PAD>",
|
8 |
+
"padding_side": "right",
|
9 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
10 |
+
"truncation_side": "right",
|
11 |
+
"unk_token": "<UNK>"
|
12 |
+
}
|