upload
Browse files- README.md +5 -0
- config.json +24 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- train_script.py +398 -0
- train_steps.log +39 -0
README.md
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DistilBERT with word2vec token embeddings
|
| 2 |
+
|
| 3 |
+
This model has a word2vec token embedding matrix with 256k entries. The word2vec was trained on 100GB data from C4, MSMARCO, News, Wikipedia, S2ORC, for 3 epochs.
|
| 4 |
+
|
| 5 |
+
Then the model was trained on this dataset with MLM for 250k steps (batch size 64). The token embeddings were NOT updated.
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "train-w2v-model/c4_msmarco_news_s2orc_wiki/distilbert-256k/",
|
| 3 |
+
"activation": "gelu",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"DistilBertForMaskedLM"
|
| 6 |
+
],
|
| 7 |
+
"attention_dropout": 0.1,
|
| 8 |
+
"dim": 768,
|
| 9 |
+
"dropout": 0.1,
|
| 10 |
+
"hidden_dim": 3072,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"max_position_embeddings": 512,
|
| 13 |
+
"model_type": "distilbert",
|
| 14 |
+
"n_heads": 12,
|
| 15 |
+
"n_layers": 6,
|
| 16 |
+
"pad_token_id": 0,
|
| 17 |
+
"qa_dropout": 0.1,
|
| 18 |
+
"seq_classif_dropout": 0.2,
|
| 19 |
+
"sinusoidal_pos_embds": false,
|
| 20 |
+
"tie_weights_": true,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.17.0",
|
| 23 |
+
"vocab_size": 256000
|
| 24 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d86d806578dfb9255ebc056205c99ac0622768fe42427eb3c9b457ef0631444
|
| 3 |
+
size 961553391
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"model_max_length": 512, "unk_token": "[UNK]", "cls_token": "[CLS]", "sep_token": "[SEP]", "pad_token": "[PAD]", "mask_token": "[MASK]", "model_input_names": ["input_ids", "attention_mask"], "special_tokens_map_file": "c4_msmarco_news_s2orc_wiki/tokenizer-256k/special_tokens_map.json", "name_or_path": "train-w2v-model/c4_msmarco_news_s2orc_wiki/distilbert-256k/", "tokenizer_class": "PreTrainedTokenizerFast"}
|
train_script.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import argparse
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import datasets
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
+
from tqdm.auto import tqdm
|
| 11 |
+
import sys
|
| 12 |
+
import transformers
|
| 13 |
+
from accelerate import Accelerator, DistributedType
|
| 14 |
+
from shutil import copyfile
|
| 15 |
+
import wandb
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
from transformers import (
|
| 19 |
+
MODEL_MAPPING,
|
| 20 |
+
AutoModelForMaskedLM,
|
| 21 |
+
AutoTokenizer,
|
| 22 |
+
DataCollatorForLanguageModeling,
|
| 23 |
+
SchedulerType,
|
| 24 |
+
get_scheduler
|
| 25 |
+
)
|
| 26 |
+
from transformers.utils.versions import require_version
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class TrainDataset(torch.utils.data.IterableDataset):
|
| 31 |
+
def __init__(self, filepath, tokenizer, max_length, batch_size, train_samples):
|
| 32 |
+
self.tokenizer = tokenizer
|
| 33 |
+
self.fIn = open(filepath)
|
| 34 |
+
self.max_length = max_length
|
| 35 |
+
self.batch_size = batch_size
|
| 36 |
+
self.train_samples = train_samples
|
| 37 |
+
|
| 38 |
+
def __iter__(self):
|
| 39 |
+
batch = []
|
| 40 |
+
for sent in self.fIn:
|
| 41 |
+
batch.append(sent.strip()[0:1000])
|
| 42 |
+
|
| 43 |
+
if len(batch) >= self.batch_size:
|
| 44 |
+
#Use multi process tokenization
|
| 45 |
+
encoded = self.tokenizer(batch, add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, padding=True)
|
| 46 |
+
#print(len(encoded['input_ids'][0]))
|
| 47 |
+
for idx in range(len(batch)):
|
| 48 |
+
single_sample = {key: encoded[key][idx] for key in encoded}
|
| 49 |
+
yield single_sample
|
| 50 |
+
|
| 51 |
+
batch = []
|
| 52 |
+
|
| 53 |
+
def __len__(self):
|
| 54 |
+
return self.train_samples
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
## Dev dataset
|
| 61 |
+
class DevDataset(torch.utils.data.Dataset):
|
| 62 |
+
def __init__(self, filepath, tokenizer, max_length):
|
| 63 |
+
self.tokenizer = tokenizer
|
| 64 |
+
self.max_length = max_length
|
| 65 |
+
with open(filepath) as fIn:
|
| 66 |
+
sentences = [sent.strip() for sent in fIn]
|
| 67 |
+
|
| 68 |
+
self.num_sentences = len(sentences)
|
| 69 |
+
self.tokenized = self.tokenizer(sentences, add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True)
|
| 70 |
+
|
| 71 |
+
def __getitem__(self, idx):
|
| 72 |
+
return {key: self.tokenized[key][idx] for key in self.tokenized}
|
| 73 |
+
|
| 74 |
+
def __len__(self):
|
| 75 |
+
return self.num_sentences
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
logger = logging.getLogger(__name__)
|
| 80 |
+
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
| 81 |
+
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
| 82 |
+
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def parse_args():
|
| 86 |
+
parser = argparse.ArgumentParser(description="Finetune a transformers model on a Masked Language Modeling task")
|
| 87 |
+
parser.add_argument(
|
| 88 |
+
"--dataset_config_name",
|
| 89 |
+
type=str,
|
| 90 |
+
default=None,
|
| 91 |
+
help="The configuration name of the dataset to use (via the datasets library).",
|
| 92 |
+
)
|
| 93 |
+
parser.add_argument(
|
| 94 |
+
"--train_file", type=str, default=None, help="A text file data (1 text per line).."
|
| 95 |
+
)
|
| 96 |
+
parser.add_argument(
|
| 97 |
+
"--dev_file", type=str, default=None, help="A text file data (1 text per line)."
|
| 98 |
+
)
|
| 99 |
+
parser.add_argument(
|
| 100 |
+
"--model_name",
|
| 101 |
+
default="nicoladecao/msmarco-word2vec256000-distilbert-base-uncased",
|
| 102 |
+
type=str,
|
| 103 |
+
help="Path to pretrained model or model identifier from huggingface.co/models."
|
| 104 |
+
)
|
| 105 |
+
parser.add_argument(
|
| 106 |
+
"--per_device_batch_size",
|
| 107 |
+
type=int,
|
| 108 |
+
default=16,
|
| 109 |
+
help="Batch size (per device) for the training dataloader.",
|
| 110 |
+
)
|
| 111 |
+
parser.add_argument(
|
| 112 |
+
"--learning_rate",
|
| 113 |
+
type=float,
|
| 114 |
+
default=5e-5,
|
| 115 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 116 |
+
)
|
| 117 |
+
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
|
| 118 |
+
parser.add_argument("--num_train_epochs", type=int, default=1, help="Total number of training epochs to perform.")
|
| 119 |
+
parser.add_argument(
|
| 120 |
+
"--max_train_steps",
|
| 121 |
+
type=int,
|
| 122 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 123 |
+
)
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--gradient_accumulation_steps",
|
| 126 |
+
type=int,
|
| 127 |
+
default=1,
|
| 128 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 129 |
+
)
|
| 130 |
+
parser.add_argument(
|
| 131 |
+
"--lr_scheduler_type",
|
| 132 |
+
type=SchedulerType,
|
| 133 |
+
default="linear",
|
| 134 |
+
help="The scheduler type to use.",
|
| 135 |
+
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
| 136 |
+
)
|
| 137 |
+
parser.add_argument(
|
| 138 |
+
"--num_warmup_steps", type=int, default=1000, help="Number of steps for the warmup in the lr scheduler."
|
| 139 |
+
)
|
| 140 |
+
parser.add_argument(
|
| 141 |
+
"--model_type",
|
| 142 |
+
type=str,
|
| 143 |
+
default=None,
|
| 144 |
+
help="Model type to use if training from scratch.",
|
| 145 |
+
choices=MODEL_TYPES,
|
| 146 |
+
)
|
| 147 |
+
parser.add_argument(
|
| 148 |
+
"--max_seq_length",
|
| 149 |
+
type=int,
|
| 150 |
+
default=256,
|
| 151 |
+
help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated.",
|
| 152 |
+
)
|
| 153 |
+
parser.add_argument(
|
| 154 |
+
"--line_by_line",
|
| 155 |
+
type=bool,
|
| 156 |
+
default=True,
|
| 157 |
+
help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
|
| 158 |
+
)
|
| 159 |
+
parser.add_argument(
|
| 160 |
+
"--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets"
|
| 161 |
+
)
|
| 162 |
+
parser.add_argument(
|
| 163 |
+
"--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
|
| 164 |
+
)
|
| 165 |
+
parser.add_argument("--mixed_precision", default="fp16")
|
| 166 |
+
parser.add_argument("--train_samples", required=True, type=int)
|
| 167 |
+
parser.add_argument("--eval_steps", default=10000, type=int)
|
| 168 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float)
|
| 169 |
+
parser.add_argument("--project", default="bert-word2vec")
|
| 170 |
+
parser.add_argument("--freeze_emb_layer", default=False, action='store_true')
|
| 171 |
+
parser.add_argument("--log_interval", default=1000, type=int)
|
| 172 |
+
parser.add_argument("--ckp_steps", default=50000, type=int)
|
| 173 |
+
|
| 174 |
+
args = parser.parse_args()
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
return args
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def main():
|
| 181 |
+
args = parse_args()
|
| 182 |
+
|
| 183 |
+
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
| 184 |
+
accelerator = Accelerator(mixed_precision=args.mixed_precision)
|
| 185 |
+
# Make one log on every process with the configuration for debugging.
|
| 186 |
+
logging.basicConfig(
|
| 187 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 188 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 189 |
+
level=logging.INFO,
|
| 190 |
+
)
|
| 191 |
+
logger.info(accelerator.state)
|
| 192 |
+
|
| 193 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
| 194 |
+
# accelerator.is_local_main_process is only True for one process per machine.
|
| 195 |
+
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
|
| 196 |
+
if accelerator.is_local_main_process:
|
| 197 |
+
datasets.utils.logging.set_verbosity_warning()
|
| 198 |
+
transformers.utils.logging.set_verbosity_info()
|
| 199 |
+
else:
|
| 200 |
+
datasets.utils.logging.set_verbosity_error()
|
| 201 |
+
transformers.utils.logging.set_verbosity_error()
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
accelerator.wait_for_everyone()
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
#Load model
|
| 208 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
| 209 |
+
model = AutoModelForMaskedLM.from_pretrained(args.model_name)
|
| 210 |
+
|
| 211 |
+
#Freeze emb layer
|
| 212 |
+
if args.freeze_emb_layer:
|
| 213 |
+
model.distilbert.embeddings.word_embeddings.requires_grad_(False)
|
| 214 |
+
|
| 215 |
+
# Logging & Co on main process
|
| 216 |
+
if accelerator.is_main_process:
|
| 217 |
+
exp_name = f'{args.model_name.replace("/", "-")}-{"freeze_emb" if args.freeze_emb_layer else "update_emb"}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
|
| 218 |
+
output_dir = os.path.join("output-mlm", exp_name)
|
| 219 |
+
wandb.init(project=args.project, name=exp_name, config=args)
|
| 220 |
+
|
| 221 |
+
os.makedirs(output_dir, exist_ok=False)
|
| 222 |
+
|
| 223 |
+
#Save tokenizer
|
| 224 |
+
tokenizer.save_pretrained(output_dir)
|
| 225 |
+
|
| 226 |
+
#Save train script
|
| 227 |
+
train_script_path = os.path.join(output_dir, 'train_script.py')
|
| 228 |
+
copyfile(__file__, train_script_path)
|
| 229 |
+
with open(train_script_path, 'a') as fOut:
|
| 230 |
+
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
total_batch_size = args.per_device_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 234 |
+
|
| 235 |
+
train_dataset = TrainDataset(args.train_file, tokenizer, args.max_seq_length, batch_size=total_batch_size, train_samples=args.train_samples)
|
| 236 |
+
eval_dataset = DevDataset(args.dev_file, tokenizer, args.max_seq_length)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# Data collator
|
| 240 |
+
# This one will take care of randomly masking the tokens.
|
| 241 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=args.mlm_probability)
|
| 242 |
+
|
| 243 |
+
# DataLoaders creation:
|
| 244 |
+
train_dataloader = DataLoader(train_dataset, collate_fn=data_collator, batch_size=args.per_device_batch_size)
|
| 245 |
+
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_batch_size)
|
| 246 |
+
|
| 247 |
+
# Optimizer
|
| 248 |
+
# Split weights in two groups, one with weight decay and the other not.
|
| 249 |
+
no_decay = ["bias", "LayerNorm.weight"]
|
| 250 |
+
optimizer_grouped_parameters = [
|
| 251 |
+
{
|
| 252 |
+
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
| 253 |
+
"weight_decay": args.weight_decay,
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
| 257 |
+
"weight_decay": 0.0,
|
| 258 |
+
},
|
| 259 |
+
]
|
| 260 |
+
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
| 261 |
+
|
| 262 |
+
# Prepare everything with our `accelerator`.
|
| 263 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer, train_dataloader, eval_dataloader)
|
| 264 |
+
|
| 265 |
+
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
|
| 266 |
+
if accelerator.distributed_type == DistributedType.TPU:
|
| 267 |
+
model.tie_weights()
|
| 268 |
+
|
| 269 |
+
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
|
| 270 |
+
# shorter in multiprocess)
|
| 271 |
+
|
| 272 |
+
# Scheduler and math around the number of training steps.
|
| 273 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
| 274 |
+
if args.max_train_steps is None:
|
| 275 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
| 276 |
+
else:
|
| 277 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 278 |
+
|
| 279 |
+
lr_scheduler = get_scheduler(
|
| 280 |
+
name=args.lr_scheduler_type,
|
| 281 |
+
optimizer=optimizer,
|
| 282 |
+
num_warmup_steps=args.num_warmup_steps,
|
| 283 |
+
num_training_steps=args.max_train_steps,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Train!
|
| 288 |
+
logger.info("***** Running training *****")
|
| 289 |
+
logger.info(f" Num examples = {args.train_samples}")
|
| 290 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
| 291 |
+
logger.info(f" Instantaneous batch size per device = {args.per_device_batch_size}")
|
| 292 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 293 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 294 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
| 295 |
+
# Only show the progress bar once on each machine.
|
| 296 |
+
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process, smoothing=0.05)
|
| 297 |
+
completed_steps = 0
|
| 298 |
+
train_loss_values = []
|
| 299 |
+
|
| 300 |
+
best_eval_loss = 999999
|
| 301 |
+
if accelerator.is_main_process:
|
| 302 |
+
best_ckp_dir = os.path.join(output_dir, "best")
|
| 303 |
+
tokenizer.save_pretrained(best_ckp_dir)
|
| 304 |
+
|
| 305 |
+
for epoch in range(args.num_train_epochs):
|
| 306 |
+
logger.info(f"Start epoch {epoch}")
|
| 307 |
+
model.train()
|
| 308 |
+
for step, batch in enumerate(train_dataloader):
|
| 309 |
+
outputs = model(**batch)
|
| 310 |
+
loss = outputs.loss
|
| 311 |
+
loss = loss / args.gradient_accumulation_steps
|
| 312 |
+
|
| 313 |
+
if accelerator.is_main_process:
|
| 314 |
+
train_loss_values.append(loss.cpu().item())
|
| 315 |
+
|
| 316 |
+
accelerator.backward(loss)
|
| 317 |
+
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 318 |
+
if step % args.gradient_accumulation_steps == 0:
|
| 319 |
+
optimizer.step()
|
| 320 |
+
lr_scheduler.step()
|
| 321 |
+
optimizer.zero_grad()
|
| 322 |
+
progress_bar.update(1)
|
| 323 |
+
completed_steps += 1
|
| 324 |
+
|
| 325 |
+
### Do logging
|
| 326 |
+
if accelerator.is_main_process:
|
| 327 |
+
if completed_steps % args.log_interval == 0:
|
| 328 |
+
wandb.log({"train/loss": np.mean(train_loss_values)}, step=completed_steps)
|
| 329 |
+
train_loss_values = []
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
if completed_steps % args.eval_steps == 0:
|
| 333 |
+
model.eval()
|
| 334 |
+
losses = []
|
| 335 |
+
for step, batch in enumerate(eval_dataloader):
|
| 336 |
+
with torch.no_grad():
|
| 337 |
+
outputs = model(**batch)
|
| 338 |
+
|
| 339 |
+
loss = outputs.loss
|
| 340 |
+
losses.append(accelerator.gather(loss.repeat(args.per_device_batch_size)))
|
| 341 |
+
|
| 342 |
+
losses = torch.cat(losses)
|
| 343 |
+
losses = losses[: len(eval_dataset)]
|
| 344 |
+
try:
|
| 345 |
+
eval_loss = torch.mean(losses)
|
| 346 |
+
except OverflowError:
|
| 347 |
+
eval_loss = float("inf")
|
| 348 |
+
|
| 349 |
+
logger.info(f"step {completed_steps}: perplexity: {eval_loss}")
|
| 350 |
+
if accelerator.is_main_process:
|
| 351 |
+
wandb.log({"eval/loss": eval_loss}, step=completed_steps)
|
| 352 |
+
|
| 353 |
+
model.train()
|
| 354 |
+
|
| 355 |
+
#Save model
|
| 356 |
+
accelerator.wait_for_everyone()
|
| 357 |
+
if accelerator.is_main_process:
|
| 358 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 359 |
+
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
|
| 360 |
+
with open(os.path.join(output_dir, "train_steps.log"), 'a') as fOut:
|
| 361 |
+
fOut.write(f"{completed_steps}: {eval_loss}\n")
|
| 362 |
+
|
| 363 |
+
#Save best model
|
| 364 |
+
if eval_loss < best_eval_loss:
|
| 365 |
+
best_eval_loss = eval_loss
|
| 366 |
+
unwrapped_model.save_pretrained(best_ckp_dir, save_function=accelerator.save)
|
| 367 |
+
with open(os.path.join(best_ckp_dir, "train_steps.log"), 'a') as fOut:
|
| 368 |
+
fOut.write(f"{completed_steps}: {eval_loss}\n")
|
| 369 |
+
|
| 370 |
+
if accelerator.is_main_process and completed_steps % args.ckp_steps == 0:
|
| 371 |
+
ckp_dir = os.path.join(output_dir, f"ckp-{int(completed_steps/1000)}k")
|
| 372 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 373 |
+
unwrapped_model.save_pretrained(ckp_dir, save_function=accelerator.save)
|
| 374 |
+
tokenizer.save_pretrained(ckp_dir)
|
| 375 |
+
with open(os.path.join(ckp_dir, "train_steps.log"), 'a') as fOut:
|
| 376 |
+
fOut.write(f"{completed_steps}: {eval_loss}\n")
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
if completed_steps >= args.max_train_steps:
|
| 380 |
+
break
|
| 381 |
+
|
| 382 |
+
if args.output_dir is not None:
|
| 383 |
+
accelerator.wait_for_everyone()
|
| 384 |
+
if accelerator.is_main_process:
|
| 385 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 386 |
+
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
|
| 387 |
+
with open(os.path.join(output_dir, "train_steps.log"), 'a') as fOut:
|
| 388 |
+
fOut.write(f"{completed_steps}\n")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
if __name__ == "__main__":
|
| 394 |
+
main()
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
# Script was called via:
|
| 398 |
+
#python train_mlm-iterable.py --train_file data/c4_msmarco_news_s2orc_wiki_train.txt --dev_file data/c4_msmarco_news_s2orc_wiki_dev.txt --train_samples 100000000 --model_name train-w2v-model/c4_msmarco_news_s2orc_wiki/distilbert-256k/ --freeze_emb_layer
|
train_steps.log
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
10000: 3.6185991764068604
|
| 2 |
+
20000: 3.181567430496216
|
| 3 |
+
30000: 3.019852638244629
|
| 4 |
+
40000: 2.8929433822631836
|
| 5 |
+
50000: 2.865853786468506
|
| 6 |
+
60000: 2.8218629360198975
|
| 7 |
+
70000: 2.7376461029052734
|
| 8 |
+
90000: 2.698227882385254
|
| 9 |
+
100000: 2.6650893688201904
|
| 10 |
+
120000: 2.6339340209960938
|
| 11 |
+
130000: 2.593796730041504
|
| 12 |
+
160000: 2.570080280303955
|
| 13 |
+
180000: 2.5539512634277344
|
| 14 |
+
190000: 2.5419578552246094
|
| 15 |
+
210000: 2.4972760677337646
|
| 16 |
+
260000: 2.4895386695861816
|
| 17 |
+
270000: 2.481090545654297
|
| 18 |
+
290000: 2.4765520095825195
|
| 19 |
+
300000: 2.463596820831299
|
| 20 |
+
320000: 2.4584429264068604
|
| 21 |
+
350000: 2.450732469558716
|
| 22 |
+
360000: 2.443289279937744
|
| 23 |
+
370000: 2.4305179119110107
|
| 24 |
+
410000: 2.4060347080230713
|
| 25 |
+
470000: 2.376832962036133
|
| 26 |
+
510000: 2.3685810565948486
|
| 27 |
+
550000: 2.3647472858428955
|
| 28 |
+
600000: 2.3556222915649414
|
| 29 |
+
670000: 2.3360767364501953
|
| 30 |
+
690000: 2.327178955078125
|
| 31 |
+
730000: 2.3191168308258057
|
| 32 |
+
740000: 2.3143470287323
|
| 33 |
+
830000: 2.3057608604431152
|
| 34 |
+
840000: 2.2876601219177246
|
| 35 |
+
980000: 2.253411293029785
|
| 36 |
+
1080000: 2.241132974624634
|
| 37 |
+
1230000: 2.234037160873413
|
| 38 |
+
1320000: 2.2321970462799072
|
| 39 |
+
1370000: 2.2040650844573975
|