Upload src/inference.py with huggingface_hub
Browse files- src/inference.py +79 -0
src/inference.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
from src.models import ModernBertForSentiment
|
| 4 |
+
from transformers import ModernBertConfig
|
| 5 |
+
from typing import Dict, Any
|
| 6 |
+
import yaml
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SentimentInference:
|
| 11 |
+
def __init__(self, config_path: str = "config.yaml"):
|
| 12 |
+
"""Load configuration and initialize model and tokenizer."""
|
| 13 |
+
with open(config_path, 'r') as f:
|
| 14 |
+
config = yaml.safe_load(f)
|
| 15 |
+
|
| 16 |
+
model_cfg = config.get('model', {})
|
| 17 |
+
inference_cfg = config.get('inference', {})
|
| 18 |
+
|
| 19 |
+
# Path to the .pt model weights file
|
| 20 |
+
model_weights_path = inference_cfg.get('model_path',
|
| 21 |
+
os.path.join(model_cfg.get('output_dir', 'checkpoints'), 'best_model.pt'))
|
| 22 |
+
|
| 23 |
+
# Base model name from config (e.g., 'answerdotai/ModernBERT-base')
|
| 24 |
+
# This will be used for loading both tokenizer and base BERT config from Hugging Face Hub
|
| 25 |
+
base_model_name = model_cfg.get('name', 'answerdotai/ModernBERT-base')
|
| 26 |
+
|
| 27 |
+
self.max_length = inference_cfg.get('max_length', model_cfg.get('max_length', 256))
|
| 28 |
+
|
| 29 |
+
# Load tokenizer from the base model name (e.g., from Hugging Face Hub)
|
| 30 |
+
print(f"Loading tokenizer from: {base_model_name}")
|
| 31 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 32 |
+
|
| 33 |
+
# Load base BERT config from the base model name
|
| 34 |
+
print(f"Loading ModernBertConfig from: {base_model_name}")
|
| 35 |
+
bert_config = ModernBertConfig.from_pretrained(base_model_name)
|
| 36 |
+
|
| 37 |
+
# --- Apply any necessary overrides from your config to the loaded bert_config ---
|
| 38 |
+
# For example, if your ModernBertForSentiment expects specific config values beyond the base BERT model.
|
| 39 |
+
# Your current ModernBertForSentiment takes the entire config object, which might implicitly carry these.
|
| 40 |
+
# However, explicitly setting them on bert_config loaded from HF is safer if they are architecturally relevant.
|
| 41 |
+
bert_config.classifier_dropout = model_cfg.get('dropout', bert_config.classifier_dropout) # Example
|
| 42 |
+
# Ensure num_labels is set if your inference model needs it (usually for HF pipeline, less so for manual predict)
|
| 43 |
+
# bert_config.num_labels = model_cfg.get('num_labels', 1) # Typically 1 for binary sentiment regression-style output
|
| 44 |
+
|
| 45 |
+
# It's also important that pooling_strategy and num_weighted_layers are set on the config object
|
| 46 |
+
# that ModernBertForSentiment receives, as it uses these to build its layers.
|
| 47 |
+
# These are usually fine-tuning specific, not part of the base HF config, so they should come from your model_cfg.
|
| 48 |
+
bert_config.pooling_strategy = model_cfg.get('pooling_strategy', 'cls')
|
| 49 |
+
bert_config.num_weighted_layers = model_cfg.get('num_weighted_layers', 4)
|
| 50 |
+
bert_config.loss_function = model_cfg.get('loss_function', {'name': 'SentimentWeightedLoss', 'params': {}}) # Needed by model init
|
| 51 |
+
# Ensure num_labels is explicitly set for the model's classifier head
|
| 52 |
+
bert_config.num_labels = 1 # For sentiment (positive/negative) often treated as 1 logit output
|
| 53 |
+
|
| 54 |
+
print("Instantiating ModernBertForSentiment model structure...")
|
| 55 |
+
self.model = ModernBertForSentiment(bert_config)
|
| 56 |
+
|
| 57 |
+
print(f"Loading model weights from local checkpoint: {model_weights_path}")
|
| 58 |
+
# Load the entire checkpoint dictionary first
|
| 59 |
+
checkpoint = torch.load(model_weights_path, map_location=torch.device('cpu'))
|
| 60 |
+
|
| 61 |
+
# Extract the model_state_dict from the checkpoint
|
| 62 |
+
# This handles the case where the checkpoint saves more than just the model weights (e.g., optimizer state, epoch)
|
| 63 |
+
if 'model_state_dict' in checkpoint:
|
| 64 |
+
model_state_to_load = checkpoint['model_state_dict']
|
| 65 |
+
else:
|
| 66 |
+
# If the checkpoint is just the state_dict itself (older format or different saving convention)
|
| 67 |
+
model_state_to_load = checkpoint
|
| 68 |
+
|
| 69 |
+
self.model.load_state_dict(model_state_to_load)
|
| 70 |
+
self.model.eval()
|
| 71 |
+
print("Model loaded successfully.")
|
| 72 |
+
|
| 73 |
+
def predict(self, text: str) -> Dict[str, Any]:
|
| 74 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length)
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 77 |
+
logits = outputs["logits"]
|
| 78 |
+
prob = torch.sigmoid(logits).item()
|
| 79 |
+
return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}
|