Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- sentiment-analysis
|
| 5 |
+
- modernbert
|
| 6 |
+
- imdb
|
| 7 |
+
datasets:
|
| 8 |
+
- imdb
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
- f1
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# ModernBERT IMDb Sentiment Analysis Model
|
| 15 |
+
|
| 16 |
+
## Model Description
|
| 17 |
+
Fine-tuned ModernBERT model for sentiment analysis on IMDb movie reviews. Achieves 95.75% accuracy on the test set.
|
| 18 |
+
|
| 19 |
+
## Usage
|
| 20 |
+
```python
|
| 21 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 22 |
+
|
| 23 |
+
model = AutoModelForSequenceClassification.from_pretrained("{HF_USERNAME}/{MODEL_NAME}")
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained("{HF_USERNAME}/{MODEL_NAME}")
|
| 25 |
+
|
| 26 |
+
# Input processing
|
| 27 |
+
inputs = tokenizer("This movie was fantastic!", return_tensors="pt")
|
| 28 |
+
outputs = model(**inputs)
|