Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NLLB-600M Finetuned for Robustness
|
2 |
+
We finetuned NLLB-200-distilled-600M using adapters for robustness to ASR and synthetic non-native speakers noise.
|
3 |
+
|
4 |
+
## How to use
|
5 |
+
|
6 |
+
Start by installing transformers with NLLB-200 model with added adapters
|
7 |
+
```bash
|
8 |
+
git clone https://gitlab.com/horizon-europe-voxreality/multilingual-translation/speech-translation-demo.git
|
9 |
+
cd speech-translation-demo
|
10 |
+
# You might need to switch to dev branch
|
11 |
+
pip install -e transformers
|
12 |
+
```
|
13 |
+
And now we can use the model:
|
14 |
+
```python
|
15 |
+
|
16 |
+
model_name = 'voxreality/nllb-asr-synthetic-robust'
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
model = M2M100ForConditionalGenerationWithAdapters.from_pretrained(model_name)
|
19 |
+
|
20 |
+
src_lang = 'eng_Latn'
|
21 |
+
tgt_lang = 'deu_Latn'
|
22 |
+
|
23 |
+
input_text = "This is a good day"
|
24 |
+
|
25 |
+
tokenizer.src_lang = src_lang
|
26 |
+
inputs = tokenizer(input_text, return_tensors='pt').to(model.device)
|
27 |
+
model_output = model.generate(**inputs,
|
28 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])
|
29 |
+
output_text = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0]
|
30 |
+
|
31 |
+
print(output_text)
|
32 |
+
|
33 |
+
```
|