--- tags: - mteb model-index: - name: universal-sentence-encoder-multilingual-large-3 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 70.80597014925372 - type: ap value: 32.82048192776259 - type: f1 value: 64.5323001151201 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 67.04549999999999 - type: ap value: 61.7344066191823 - type: f1 value: 66.66233213924507 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 35.85 - type: f1 value: 35.332188148679464 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 34.745135349238126 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 22.620886813816306 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 80.30945408208555 - type: cos_sim_spearman value: 79.13734536677386 - type: euclidean_pearson value: 78.92356402711572 - type: euclidean_spearman value: 79.13734536677386 - type: manhattan_pearson value: 79.0536298599996 - type: manhattan_spearman value: 79.15240595090333 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 74.66883116883116 - type: f1 value: 73.79377347715479 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 28.750702236182818 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 20.142702408387194 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 42.30500000000001 - type: f1 value: 38.547388314307206 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 63.690000000000005 - type: ap value: 59.157513278784734 - type: f1 value: 63.35865572988864 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.48062015503875 - type: f1 value: 92.14919344822017 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 70.26675786593708 - type: f1 value: 47.72003620900994 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.04505716207129 - type: f1 value: 65.75319040584333 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.80363147276395 - type: f1 value: 74.16118757920125 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.197732425855694 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 25.802309075396522 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 46.17008358584782 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 56.53148530944687 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 81.9794493404352 - type: cos_sim_spearman value: 76.42957100142304 - type: euclidean_pearson value: 78.82942656726047 - type: euclidean_spearman value: 76.4295710840889 - type: manhattan_pearson value: 78.13314706410813 - type: manhattan_spearman value: 74.9822593004123 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 80.7673081071098 - type: cos_sim_spearman value: 74.24891322087522 - type: euclidean_pearson value: 76.52411182468802 - type: euclidean_spearman value: 74.24929140605082 - type: manhattan_pearson value: 76.8324387036746 - type: manhattan_spearman value: 74.53614579807713 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 69.28614557615222 - type: cos_sim_spearman value: 71.81704450585194 - type: euclidean_pearson value: 71.1658590877318 - type: euclidean_spearman value: 71.81704444201455 - type: manhattan_pearson value: 71.36497478266207 - type: manhattan_spearman value: 72.06541804714345 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 74.87060297964618 - type: cos_sim_spearman value: 71.3835314374386 - type: euclidean_pearson value: 73.38159929423239 - type: euclidean_spearman value: 71.38353144149953 - type: manhattan_pearson value: 73.52351725668174 - type: manhattan_spearman value: 71.51640478420119 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 82.0540026051573 - type: cos_sim_spearman value: 82.4705078026881 - type: euclidean_pearson value: 81.93203207566977 - type: euclidean_spearman value: 82.47050765607385 - type: manhattan_pearson value: 81.95496687772686 - type: manhattan_spearman value: 82.32489988477197 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 76.11630455802185 - type: cos_sim_spearman value: 77.53749233675596 - type: euclidean_pearson value: 77.21678350170754 - type: euclidean_spearman value: 77.53749219731857 - type: manhattan_pearson value: 77.0111066160541 - type: manhattan_spearman value: 77.19561900456223 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 86.04867872683484 - type: cos_sim_spearman value: 86.38343806077555 - type: euclidean_pearson value: 86.62923572982524 - type: euclidean_spearman value: 86.38343806077555 - type: manhattan_pearson value: 85.88819314699656 - type: manhattan_spearman value: 85.40841620897656 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 50.81940075037091 - type: cos_sim_spearman value: 52.853775517979265 - type: euclidean_pearson value: 53.19987444831206 - type: euclidean_spearman value: 52.853775517979265 - type: manhattan_pearson value: 53.10152120352485 - type: manhattan_spearman value: 52.882886362489124 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.15848984078094 - type: cos_sim_spearman value: 81.24223670044107 - type: euclidean_pearson value: 81.80955840510725 - type: euclidean_spearman value: 81.24224792494685 - type: manhattan_pearson value: 81.20700319509191 - type: manhattan_spearman value: 80.56078137874846 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.71089108910891 - type: cos_sim_ap value: 90.8870929231928 - type: cos_sim_f1 value: 85.3719420868697 - type: cos_sim_precision value: 85.24426719840478 - type: cos_sim_recall value: 85.5 - type: dot_accuracy value: 99.71089108910891 - type: dot_ap value: 90.88709292319278 - type: dot_f1 value: 85.3719420868697 - type: dot_precision value: 85.24426719840478 - type: dot_recall value: 85.5 - type: euclidean_accuracy value: 99.71089108910891 - type: euclidean_ap value: 90.8870929231928 - type: euclidean_f1 value: 85.3719420868697 - type: euclidean_precision value: 85.24426719840478 - type: euclidean_recall value: 85.5 - type: manhattan_accuracy value: 99.72871287128713 - type: manhattan_ap value: 91.50016707647607 - type: manhattan_f1 value: 86.21700879765396 - type: manhattan_precision value: 84.32122370936902 - type: manhattan_recall value: 88.2 - type: max_accuracy value: 99.72871287128713 - type: max_ap value: 91.50016707647607 - type: max_f1 value: 86.21700879765396 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 49.339384566987555 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.39729645390336 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.459235703560942 - type: cos_sim_spearman value: 29.710719599360587 - type: dot_pearson value: 30.459236115198866 - type: dot_spearman value: 29.714606257782066 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 68.223 - type: ap value: 13.10327282975004 - type: f1 value: 52.52588280152648 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.18788907753254 - type: f1 value: 59.47679105840768 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 36.93253191095803 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.37009000417238 - type: cos_sim_ap value: 63.75973129735431 - type: cos_sim_f1 value: 59.62504595025121 - type: cos_sim_precision value: 55.66231983527798 - type: cos_sim_recall value: 64.1952506596306 - type: dot_accuracy value: 83.37009000417238 - type: dot_ap value: 63.759728820348414 - type: dot_f1 value: 59.62504595025121 - type: dot_precision value: 55.66231983527798 - type: dot_recall value: 64.1952506596306 - type: euclidean_accuracy value: 83.37009000417238 - type: euclidean_ap value: 63.75972622477462 - type: euclidean_f1 value: 59.62504595025121 - type: euclidean_precision value: 55.66231983527798 - type: euclidean_recall value: 64.1952506596306 - type: manhattan_accuracy value: 83.28068188591524 - type: manhattan_ap value: 63.109413220673375 - type: manhattan_f1 value: 59.085923217550274 - type: manhattan_precision value: 54.903737259343146 - type: manhattan_recall value: 63.95778364116095 - type: max_accuracy value: 83.37009000417238 - type: max_ap value: 63.75973129735431 - type: max_f1 value: 59.62504595025121 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.34167733923235 - type: cos_sim_ap value: 84.20066403502292 - type: cos_sim_f1 value: 76.64693381906498 - type: cos_sim_precision value: 75.56869200838072 - type: cos_sim_recall value: 77.75639051432091 - type: dot_accuracy value: 88.34167733923235 - type: dot_ap value: 84.20066476075668 - type: dot_f1 value: 76.64693381906498 - type: dot_precision value: 75.56869200838072 - type: dot_recall value: 77.75639051432091 - type: euclidean_accuracy value: 88.34167733923235 - type: euclidean_ap value: 84.20066533105057 - type: euclidean_f1 value: 76.64693381906498 - type: euclidean_precision value: 75.56869200838072 - type: euclidean_recall value: 77.75639051432091 - type: manhattan_accuracy value: 88.32809407381535 - type: manhattan_ap value: 84.17666758732113 - type: manhattan_f1 value: 76.6911654417279 - type: manhattan_precision value: 74.75146198830409 - type: manhattan_recall value: 78.73421619956883 - type: max_accuracy value: 88.34167733923235 - type: max_ap value: 84.20066533105057 - type: max_f1 value: 76.6911654417279 --- This is a part of the [MTEB test](https://huggingface.co/spaces/mteb/leaderboard). ``` # !pip install tensorflow_text import tensorflow_hub as hub from tensorflow_text import SentencepieceTokenizer import tensorflow as tf embedder=hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3") class USE(): def encode(self, sentences, batch_size=32, **kwargs): embeddings = [] for i in range(0, len(sentences), batch_size): batch_sentences = sentences[i:i+batch_size] batch_embeddings = embedder(batch_sentences) embeddings.extend(batch_embeddings) return embeddings model = USE() ```