--- license: gpl-3.0 tags: - human-pose-estimation - pose-estimation - probabilistic - computer-vision datasets: - COCO - CropCOCO - OCHuman metrics: - mAP - Ex-mAP --- # 📦 ProbPose: Probabilistic Human Pose Estimation ProbPose introduces a probabilistic framework for human pose estimation, focusing on reducing false positives by predicting keypoint presence probabilities and handling out-of-image keypoints. It also introduces the new Ex-OKS metric to evaluate models on false positive predictions. [![arXiv](https://img.shields.io/badge/arXiv-2412.02254-b31b1b?style=flat)](https://arxiv.org/abs/2412.02254) [![GitHub repository](https://img.shields.io/badge/GitHub-black?style=flat&logo=github&logoColor=white)](https://github.com/MiraPurkrabek/ProbPose_code) [![Project Website](https://img.shields.io/badge/Project%20Website-blue?style=flat&logo=google-chrome&logoColor=white)](https://mirapurkrabek.github.io/ProbPose/) ## 📝 Model Details - **Model type**: ViT-s backbone with ProbPose head - **Input**: RGB images (192x256) - **Output**: Coordinates, uncertainties, quality and visibility for human keypoints - **Language(s)**: Not language-dependent (vision model) - **License**: GPL-3.0 - **Framework**: MMPose ## 🧠 Training - **Training data**: [COCO Dataset](https://cocodataset.org/#home) - **Training script**: [GitHub - ProbPose_code](https://github.com/MiraPurkrabek/ProbPose_code) - **Epochs**: 210 - **Batch size**: 64 - **Learning rate**: 5e-5 - **Hardware**: 4x NVIDIA A-100 ## 📈 Evaluation - **Metrics**: mAP and Ex-mAP - With GT bounding boxes | Dataset | mAP | Ex-mAP | |----------|--------|------- | | COCO | 76.6 | 76.4 | | CropCOCO | 81.7 | 73.9 | | OCHuman | 60.4 | 60.2 | ## 📄 Citation If you use ProbPose in your research, please cite: ```bibtex @inproceedings{probpose2025, title={{ProbPose: A Probabilistic Approach to 2D Human Pose Estimation}}, author={Miroslav Purkrabek and Jiri Matas}, year={2025}, booktitle={Computer Vision and Pattern Recognition (CVPR)}, } ``` ## 🧑‍💻 Authors - Miroslav Purkrabek ([personal website](https://github.com/MiraPurkrabek)) - Jiri Matas ([personal website](https://cmp.felk.cvut.cz/~matas/))