Model save
Browse files- README.md +81 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-large-twitter-indonesia-sarcastic
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlm-roberta-large-twitter-indonesia-sarcastic
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8974
|
24 |
+
- Accuracy: 0.8918
|
25 |
+
- F1: 0.7387
|
26 |
+
- Precision: 0.9318
|
27 |
+
- Recall: 0.6119
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: cosine
|
52 |
+
- num_epochs: 100.0
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| 0.5862 | 1.0 | 59 | 0.5304 | 0.75 | 0.0 | 0.0 | 0.0 |
|
60 |
+
| 0.5168 | 2.0 | 118 | 0.4897 | 0.75 | 0.0 | 0.0 | 0.0 |
|
61 |
+
| 0.4771 | 3.0 | 177 | 0.4535 | 0.7948 | 0.3373 | 0.875 | 0.2090 |
|
62 |
+
| 0.4101 | 4.0 | 236 | 0.4235 | 0.7910 | 0.6585 | 0.5567 | 0.8060 |
|
63 |
+
| 0.3225 | 5.0 | 295 | 0.4733 | 0.8507 | 0.5918 | 0.9355 | 0.4328 |
|
64 |
+
| 0.2246 | 6.0 | 354 | 0.3362 | 0.8694 | 0.7009 | 0.82 | 0.6119 |
|
65 |
+
| 0.166 | 7.0 | 413 | 0.3672 | 0.8769 | 0.7227 | 0.8269 | 0.6418 |
|
66 |
+
| 0.0989 | 8.0 | 472 | 0.3835 | 0.8769 | 0.7626 | 0.7361 | 0.7910 |
|
67 |
+
| 0.0797 | 9.0 | 531 | 0.4379 | 0.8993 | 0.7939 | 0.8125 | 0.7761 |
|
68 |
+
| 0.08 | 10.0 | 590 | 0.7677 | 0.8545 | 0.7451 | 0.6628 | 0.8507 |
|
69 |
+
| 0.0505 | 11.0 | 649 | 0.7316 | 0.8806 | 0.7288 | 0.8431 | 0.6418 |
|
70 |
+
| 0.073 | 12.0 | 708 | 0.4796 | 0.9104 | 0.8182 | 0.8308 | 0.8060 |
|
71 |
+
| 0.05 | 13.0 | 767 | 0.8469 | 0.8694 | 0.7059 | 0.8077 | 0.6269 |
|
72 |
+
| 0.0583 | 14.0 | 826 | 0.7266 | 0.8918 | 0.7563 | 0.8654 | 0.6716 |
|
73 |
+
| 0.0275 | 15.0 | 885 | 0.8974 | 0.8918 | 0.7387 | 0.9318 | 0.6119 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.36.2
|
79 |
+
- Pytorch 2.1.1+cu121
|
80 |
+
- Datasets 2.15.0
|
81 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2239618672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28a11235d786ed16dcc2b88d02763f0e226bffaaab875ecac85e6c88c49bd619
|
3 |
size 2239618672
|