Commit
·
692dbf7
1
Parent(s):
2e93e41
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,130 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- shareAI/ShareGPT-Chinese-English-90k
|
| 5 |
+
language:
|
| 6 |
+
- zh
|
| 7 |
+
- en
|
| 8 |
+
pipeline_tag: text-generation
|
| 9 |
---
|
| 10 |
+

|
| 11 |
+
|
| 12 |
+
<div align="center">
|
| 13 |
+
<h2>
|
| 14 |
+
Aurora: Activating chinese chat capability for Mistral-8x7B sparse Mixture-of-Experts through Instruction-Tuning
|
| 15 |
+
</h2>
|
| 16 |
+
</div>
|
| 17 |
+
|
| 18 |
+
1. <h1>Please follow our Github: <a href="https://github.com/WangRongsheng/Aurora">https://github.com/WangRongsheng/Aurora</a></h1>
|
| 19 |
+
2. <h1>Please follow our Paper: <a href="https://arxiv.org/abs/2312.14557">https://arxiv.org/abs/2312.14557</a></h1>
|
| 20 |
+
|
| 21 |
+
## Overview
|
| 22 |
+
|
| 23 |
+
Existing research has demonstrated that refining large language models (LLMs) through the utilization of machine-generated instruction-following data empowers these models to exhibit impressive zero-shot capabilities for novel tasks, without requiring human-authored instructions. In this paper, we systematically investigate, preprocess, and integrate three Chinese instruction-following datasets with the aim of enhancing the Chinese conversational capabilities of Mixtral-8x7B sparse Mixture-of-Experts model. Through instruction fine-tuning on this carefully processed dataset, we successfully construct the Mixtral-8x7B sparse Mixture-of-Experts model named "Aurora." To assess the performance of Aurora, we utilize three widely recognized benchmark tests: C-Eval, MMLU, and CMMLU. Empirical studies validate the effectiveness of instruction fine-tuning applied to Mixtral-8x7B sparse Mixture-of-Experts model. This work is pioneering in the execution of instruction fine-tuning on a sparse expert-mixed model, marking a significant breakthrough in enhancing the capabilities of this model architecture.
|
| 24 |
+
|
| 25 |
+

|
| 26 |
+
|
| 27 |
+
## Usage
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
import gradio as gr
|
| 31 |
+
import torch
|
| 32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
| 33 |
+
from threading import Thread
|
| 34 |
+
from peft import PeftModel
|
| 35 |
+
import time
|
| 36 |
+
|
| 37 |
+
model_name_or_path = "mistralai/Mixtral-8x7B-Instruct-v0.1" # download weights from https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
|
| 38 |
+
lora_weights = "wangrongsheng/Aurora" # download weights from https://huggingface.co/wangrongsheng/Aurora
|
| 39 |
+
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 41 |
+
model0 = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_4bit=True, device_map="auto", torch_dtype=torch.bfloat16)
|
| 42 |
+
model = PeftModel.from_pretrained(
|
| 43 |
+
model0,
|
| 44 |
+
lora_weights,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
class StopOnTokens(StoppingCriteria):
|
| 48 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 49 |
+
stop_ids = [0,]
|
| 50 |
+
for stop_id in stop_ids:
|
| 51 |
+
if input_ids[0][-1] == stop_id:
|
| 52 |
+
return True
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
def convert_history_to_text(history):
|
| 56 |
+
text = ""
|
| 57 |
+
if len(history) > 1:
|
| 58 |
+
text = "<s> " + "".join(
|
| 59 |
+
[
|
| 60 |
+
"".join(
|
| 61 |
+
[
|
| 62 |
+
f"[INST]{item[0]}[/INST] {item[1]} ",
|
| 63 |
+
]
|
| 64 |
+
)
|
| 65 |
+
for item in history[:-1]
|
| 66 |
+
]
|
| 67 |
+
) + "</s> "
|
| 68 |
+
text += "".join(
|
| 69 |
+
[
|
| 70 |
+
"".join(
|
| 71 |
+
[
|
| 72 |
+
f"[INST]{history[-1][0]}[/INST]",
|
| 73 |
+
]
|
| 74 |
+
)
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
def predict(message, history):
|
| 80 |
+
|
| 81 |
+
history_transformer_format = history + [[message, ""]]
|
| 82 |
+
stop = StopOnTokens()
|
| 83 |
+
|
| 84 |
+
messages = convert_history_to_text(history_transformer_format)
|
| 85 |
+
|
| 86 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
| 87 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 88 |
+
generate_kwargs = dict(
|
| 89 |
+
model_inputs,
|
| 90 |
+
streamer=streamer,
|
| 91 |
+
max_new_tokens=4096,
|
| 92 |
+
do_sample=True,
|
| 93 |
+
top_p=0.95,
|
| 94 |
+
top_k=1000,
|
| 95 |
+
temperature=1.0,
|
| 96 |
+
num_beams=1,
|
| 97 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 98 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
| 99 |
+
)
|
| 100 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 101 |
+
t.start()
|
| 102 |
+
|
| 103 |
+
partial_message = ""
|
| 104 |
+
t1 = time.time()
|
| 105 |
+
count = 0
|
| 106 |
+
for new_token in streamer:
|
| 107 |
+
if new_token != '<':
|
| 108 |
+
partial_message += new_token
|
| 109 |
+
count += 1
|
| 110 |
+
yield partial_message
|
| 111 |
+
t2 = time.time()
|
| 112 |
+
speed = count/(t2-t1)
|
| 113 |
+
print("inference speed: %f tok/s" % speed)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
gr.ChatInterface(predict,chatbot=gr.Chatbot(height=600,),title="MoE").queue().launch()
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## Citation
|
| 120 |
+
If you find our work helpful, feel free to give us a cite.
|
| 121 |
+
```latex
|
| 122 |
+
@misc{wang2023auroraactivating,
|
| 123 |
+
title={Aurora:Activating Chinese chat capability for Mixtral-8x7B sparse Mixture-of-Experts through Instruction-Tuning},
|
| 124 |
+
author={Rongsheng Wang and Haoming Chen and Ruizhe Zhou and Yaofei Duan and Kunyan Cai and Han Ma and Jiaxi Cui and Jian Li and Patrick Cheong-Iao Pang and Yapeng Wang and Tao Tan},
|
| 125 |
+
year={2023},
|
| 126 |
+
eprint={2312.14557},
|
| 127 |
+
archivePrefix={arXiv},
|
| 128 |
+
primaryClass={cs.CL}
|
| 129 |
+
}
|
| 130 |
+
```
|