Upload projector/modeling_projector.py with huggingface_hub
Browse files
    	
        projector/modeling_projector.py
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) OpenMMLab. All rights reserved.
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import torch.nn as nn
         | 
| 4 | 
            +
            from transformers import PreTrainedModel
         | 
| 5 | 
            +
            from transformers.activations import ACT2FN
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .configuration_projector import ProjectorConfig
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            class ProjectorModel(PreTrainedModel):
         | 
| 11 | 
            +
                _auto_class = 'AutoModel'
         | 
| 12 | 
            +
                config_class = ProjectorConfig
         | 
| 13 | 
            +
                base_model_prefix = 'model'
         | 
| 14 | 
            +
                supports_gradient_checkpointing = True
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                def __init__(self, config: ProjectorConfig) -> None:
         | 
| 17 | 
            +
                    super().__init__(config)
         | 
| 18 | 
            +
                    self.gradient_checkpointing = False
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                    modules = [
         | 
| 21 | 
            +
                        nn.Linear(
         | 
| 22 | 
            +
                            config.visual_hidden_size,
         | 
| 23 | 
            +
                            config.llm_hidden_size,
         | 
| 24 | 
            +
                            bias=config.bias)
         | 
| 25 | 
            +
                    ]
         | 
| 26 | 
            +
                    for _ in range(1, config.depth):
         | 
| 27 | 
            +
                        modules.append(ACT2FN[config.hidden_act])
         | 
| 28 | 
            +
                        modules.append(
         | 
| 29 | 
            +
                            nn.Linear(
         | 
| 30 | 
            +
                                config.llm_hidden_size,
         | 
| 31 | 
            +
                                config.llm_hidden_size,
         | 
| 32 | 
            +
                                bias=config.bias))
         | 
| 33 | 
            +
                    self.model = nn.Sequential(*modules)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                def enable_input_require_grads(self):
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                    def make_inputs_require_grad(module, input, output):
         | 
| 38 | 
            +
                        output.requires_grad_(True)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    self.model.register_forward_hook(make_inputs_require_grad)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 43 | 
            +
                    if isinstance(module, ProjectorModel):
         | 
| 44 | 
            +
                        module.gradient_checkpointing = value
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                def forward(self, x):
         | 
| 47 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 48 | 
            +
                        layer_outputs = torch.utils.checkpoint.checkpoint(self.model, x)
         | 
| 49 | 
            +
                    else:
         | 
| 50 | 
            +
                        layer_outputs = self.model(x)
         | 
| 51 | 
            +
                    return layer_outputs
         | 
