Upload config
Browse files- readme_template.md +154 -0
readme_template.md
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: atommic
|
| 6 |
+
datasets:
|
| 7 |
+
- StanfordKnees2019
|
| 8 |
+
thumbnail: null
|
| 9 |
+
tags:
|
| 10 |
+
- image-reconstruction
|
| 11 |
+
- CIRIM
|
| 12 |
+
- ATOMMIC
|
| 13 |
+
- pytorch
|
| 14 |
+
model-index:
|
| 15 |
+
- name: REC_CIRIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
|
| 16 |
+
results: []
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
|
| 23 |
+
Cascades of Independently Recurrent Inference Machines (CIRIM) for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## ATOMMIC: Training
|
| 27 |
+
|
| 28 |
+
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
|
| 29 |
+
```
|
| 30 |
+
pip install atommic['all']
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## How to Use this Model
|
| 34 |
+
|
| 35 |
+
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
| 36 |
+
|
| 37 |
+
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf).
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
### Automatically instantiate the model
|
| 41 |
+
|
| 42 |
+
```base
|
| 43 |
+
pretrained: true
|
| 44 |
+
checkpoint: https://huggingface.co/wdika/REC_CIRIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_CIRIM_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic
|
| 45 |
+
mode: test
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Usage
|
| 49 |
+
|
| 50 |
+
You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information.
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
## Model Architecture
|
| 54 |
+
```base
|
| 55 |
+
model:
|
| 56 |
+
model_name: CIRIM
|
| 57 |
+
recurrent_layer: IndRNN
|
| 58 |
+
conv_filters:
|
| 59 |
+
- 64
|
| 60 |
+
- 64
|
| 61 |
+
- 2
|
| 62 |
+
conv_kernels:
|
| 63 |
+
- 5
|
| 64 |
+
- 3
|
| 65 |
+
- 3
|
| 66 |
+
conv_dilations:
|
| 67 |
+
- 1
|
| 68 |
+
- 2
|
| 69 |
+
- 1
|
| 70 |
+
conv_bias:
|
| 71 |
+
- true
|
| 72 |
+
- true
|
| 73 |
+
- false
|
| 74 |
+
recurrent_filters:
|
| 75 |
+
- 64
|
| 76 |
+
- 64
|
| 77 |
+
- 0
|
| 78 |
+
recurrent_kernels:
|
| 79 |
+
- 1
|
| 80 |
+
- 1
|
| 81 |
+
- 0
|
| 82 |
+
recurrent_dilations:
|
| 83 |
+
- 1
|
| 84 |
+
- 1
|
| 85 |
+
- 0
|
| 86 |
+
recurrent_bias:
|
| 87 |
+
- true
|
| 88 |
+
- true
|
| 89 |
+
- false
|
| 90 |
+
depth: 2
|
| 91 |
+
time_steps: 8
|
| 92 |
+
conv_dim: 2
|
| 93 |
+
num_cascades: 5
|
| 94 |
+
no_dc: true
|
| 95 |
+
keep_prediction: true
|
| 96 |
+
accumulate_predictions: true
|
| 97 |
+
dimensionality: 2
|
| 98 |
+
reconstruction_loss:
|
| 99 |
+
wasserstein: 1.0
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## Training
|
| 103 |
+
```base
|
| 104 |
+
optim:
|
| 105 |
+
name: adamw
|
| 106 |
+
lr: 1e-4
|
| 107 |
+
betas:
|
| 108 |
+
- 0.9
|
| 109 |
+
- 0.999
|
| 110 |
+
weight_decay: 0.0
|
| 111 |
+
sched:
|
| 112 |
+
name: InverseSquareRootAnnealing
|
| 113 |
+
min_lr: 0.0
|
| 114 |
+
last_epoch: -1
|
| 115 |
+
warmup_ratio: 0.1
|
| 116 |
+
|
| 117 |
+
trainer:
|
| 118 |
+
strategy: ddp_find_unused_parameters_false
|
| 119 |
+
accelerator: gpu
|
| 120 |
+
devices: 1
|
| 121 |
+
num_nodes: 1
|
| 122 |
+
max_epochs: 20
|
| 123 |
+
precision: 16-mixed
|
| 124 |
+
enable_checkpointing: false
|
| 125 |
+
logger: false
|
| 126 |
+
log_every_n_steps: 50
|
| 127 |
+
check_val_every_n_epoch: -1
|
| 128 |
+
max_steps: -1
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
## Performance
|
| 132 |
+
|
| 133 |
+
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files.
|
| 134 |
+
|
| 135 |
+
Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
|
| 136 |
+
|
| 137 |
+
Results
|
| 138 |
+
-------
|
| 139 |
+
|
| 140 |
+
Evaluation against SENSE targets
|
| 141 |
+
--------------------------------
|
| 142 |
+
12x: MSE = 0.001081 +/- 0.005786 NMSE = 0.03494 +/- 0.09865 PSNR = 32.77 +/- 7.234 SSIM = 0.7955 +/- 0.311
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
## Limitations
|
| 146 |
+
|
| 147 |
+
This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
## References
|
| 151 |
+
|
| 152 |
+
[1] [ATOMMIC](https://github.com/wdika/atommic)
|
| 153 |
+
|
| 154 |
+
[2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1
|