Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Menda-3B-500
|
2 |
|
3 |
Menda-3B-500 is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) using Guided Reinforcement from Preference Optimization (GRPO). This model represents the 500-step checkpoint from the training process.
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: other
|
5 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
6 |
+
tags:
|
7 |
+
- qwen
|
8 |
+
- grpo
|
9 |
+
- reinforcement-learning
|
10 |
+
- instruction-tuning
|
11 |
+
- mathematical-reasoning
|
12 |
+
- gsm8k
|
13 |
+
datasets:
|
14 |
+
- gsm8k
|
15 |
+
model-index:
|
16 |
+
- name: Menda-3B-500
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: multiple-choice-qa
|
20 |
+
name: ARC-Challenge
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 50.0
|
25 |
+
- task:
|
26 |
+
type: multiple-choice-qa
|
27 |
+
name: BoolQ
|
28 |
+
metrics:
|
29 |
+
- name: Accuracy
|
30 |
+
type: accuracy
|
31 |
+
value: 90.0
|
32 |
+
- task:
|
33 |
+
type: multiple-choice-qa
|
34 |
+
name: HellaSwag
|
35 |
+
metrics:
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 40.0
|
39 |
+
- task:
|
40 |
+
type: multiple-choice-qa
|
41 |
+
name: Lambada
|
42 |
+
metrics:
|
43 |
+
- name: Accuracy
|
44 |
+
type: accuracy
|
45 |
+
value: 70.0
|
46 |
+
- task:
|
47 |
+
type: multiple-choice-qa
|
48 |
+
name: PIQA
|
49 |
+
metrics:
|
50 |
+
- name: Accuracy
|
51 |
+
type: accuracy
|
52 |
+
value: 90.0
|
53 |
+
- task:
|
54 |
+
type: multiple-choice-qa
|
55 |
+
name: Winogrande
|
56 |
+
metrics:
|
57 |
+
- name: Accuracy
|
58 |
+
type: accuracy
|
59 |
+
value: 90.0
|
60 |
+
- task:
|
61 |
+
type: mmlu
|
62 |
+
name: MMLU
|
63 |
+
metrics:
|
64 |
+
- name: Average
|
65 |
+
type: accuracy
|
66 |
+
value: 68.60
|
67 |
+
---
|
68 |
+
|
69 |
# Menda-3B-500
|
70 |
|
71 |
Menda-3B-500 is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) using Guided Reinforcement from Preference Optimization (GRPO). This model represents the 500-step checkpoint from the training process.
|