Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -9,6 +9,7 @@ tags:
|
|
9 |
- reasoning
|
10 |
- 3b
|
11 |
- menda
|
|
|
12 |
datasets:
|
13 |
- custom
|
14 |
model-index:
|
@@ -67,6 +68,40 @@ Menda-3b-750 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with GRPO (
|
|
67 |
- **Training Steps**: 750
|
68 |
- **Context Length**: 4096 tokens
|
69 |
- **Parameters**: 3 billion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
## Benchmark Results
|
72 |
|
|
|
9 |
- reasoning
|
10 |
- 3b
|
11 |
- menda
|
12 |
+
- chat
|
13 |
datasets:
|
14 |
- custom
|
15 |
model-index:
|
|
|
68 |
- **Training Steps**: 750
|
69 |
- **Context Length**: 4096 tokens
|
70 |
- **Parameters**: 3 billion
|
71 |
+
- **Chat Template**: Uses the Qwen2 chat template
|
72 |
+
|
73 |
+
## Chat Format
|
74 |
+
|
75 |
+
This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows:
|
76 |
+
|
77 |
+
```
|
78 |
+
<|im_start|>system
|
79 |
+
You are a helpful AI assistant.<|im_end|>
|
80 |
+
<|im_start|>user
|
81 |
+
Your question here<|im_end|>
|
82 |
+
<|im_start|>assistant
|
83 |
+
```
|
84 |
+
|
85 |
+
When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality:
|
86 |
+
|
87 |
+
```python
|
88 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
89 |
+
|
90 |
+
model_name = "weathermanj/Menda-3b-750"
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
92 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
93 |
+
|
94 |
+
messages = [
|
95 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
96 |
+
{"role": "user", "content": "Explain the concept of machine learning in simple terms."}
|
97 |
+
]
|
98 |
+
|
99 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
100 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
101 |
+
outputs = model.generate(**inputs, max_length=300)
|
102 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
103 |
+
print(response)
|
104 |
+
```
|
105 |
|
106 |
## Benchmark Results
|
107 |
|