weathermanj commited on
Commit
0aeddae
·
verified ·
1 Parent(s): b64ef83

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +35 -0
README.md CHANGED
@@ -9,6 +9,7 @@ tags:
9
  - reasoning
10
  - 3b
11
  - menda
 
12
  datasets:
13
  - custom
14
  model-index:
@@ -67,6 +68,40 @@ Menda-3b-750 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with GRPO (
67
  - **Training Steps**: 750
68
  - **Context Length**: 4096 tokens
69
  - **Parameters**: 3 billion
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ## Benchmark Results
72
 
 
9
  - reasoning
10
  - 3b
11
  - menda
12
+ - chat
13
  datasets:
14
  - custom
15
  model-index:
 
68
  - **Training Steps**: 750
69
  - **Context Length**: 4096 tokens
70
  - **Parameters**: 3 billion
71
+ - **Chat Template**: Uses the Qwen2 chat template
72
+
73
+ ## Chat Format
74
+
75
+ This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows:
76
+
77
+ ```
78
+ <|im_start|>system
79
+ You are a helpful AI assistant.<|im_end|>
80
+ <|im_start|>user
81
+ Your question here<|im_end|>
82
+ <|im_start|>assistant
83
+ ```
84
+
85
+ When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality:
86
+
87
+ ```python
88
+ from transformers import AutoModelForCausalLM, AutoTokenizer
89
+
90
+ model_name = "weathermanj/Menda-3b-750"
91
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
92
+ model = AutoModelForCausalLM.from_pretrained(model_name)
93
+
94
+ messages = [
95
+ {"role": "system", "content": "You are a helpful AI assistant."},
96
+ {"role": "user", "content": "Explain the concept of machine learning in simple terms."}
97
+ ]
98
+
99
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False)
100
+ inputs = tokenizer(prompt, return_tensors="pt")
101
+ outputs = model.generate(**inputs, max_length=300)
102
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
103
+ print(response)
104
+ ```
105
 
106
  ## Benchmark Results
107