File size: 2,601 Bytes
923d135
ca28dad
 
 
 
 
923d135
 
ca28dad
923d135
ca28dad
923d135
 
ca28dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923d135
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit
tags:
- finetuned
- lora
---

# HKT-vul-DeepSeek-R1-8b-it-v0.2

This is a LoRA fine-tuned version of [unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit](https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit).

## Training Details
- Base Model: unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit
- Fine-tuning Method: LoRA
- Merge Method: merge_and_unload()

## Usage

### Install necessary libraries
```python
import os
if "COLAB_" not in "".join(os.environ.keys()):
    !pip install unsloth
else:
    # Do this only in Colab notebooks! Otherwise use pip install unsloth
    !pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl==0.15.2 triton cut_cross_entropy unsloth_zoo
    !pip install sentencepiece protobuf datasets huggingface_hub hf_transfer
    !pip install --no-deps unsloth
```

### Install model
```python
from unsloth import FastLanguageModel
import torch
max_seq_length = 5000 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

model_name = "weifar/unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit"

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

model = FastLanguageModel.get_peft_model(
    model,
    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
    random_state = 3407,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)
```

### Use model
```python
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

inputs = tokenizer(eval_prompt, return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 4000)
```