|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
class NormalizeByChannelMeanStd(torch.nn.Module): |
|
def __init__(self, mean, std): |
|
super(NormalizeByChannelMeanStd, self).__init__() |
|
if not isinstance(mean, torch.Tensor): |
|
mean = torch.tensor(mean) |
|
if not isinstance(std, torch.Tensor): |
|
std = torch.tensor(std) |
|
self.register_buffer("mean", mean) |
|
self.register_buffer("std", std) |
|
|
|
def forward(self, tensor): |
|
return self.normalize_fn(tensor, self.mean, self.std) |
|
|
|
def extra_repr(self): |
|
return "mean={}, std={}".format(self.mean, self.std) |
|
|
|
def normalize_fn(self, tensor, mean, std): |
|
"""Differentiable version of torchvision.functional.normalize""" |
|
|
|
mean = mean[None, :, None, None] |
|
std = std[None, :, None, None] |
|
return tensor.sub(mean).div(std) |
|
|
|
|
|
__all__ = [ |
|
"ResNet", |
|
"resnet18", |
|
"resnet34", |
|
"resnet50", |
|
"resnet101", |
|
"resnet152", |
|
"resnext50_32x4d", |
|
"resnext101_32x8d", |
|
"wide_resnet50_2", |
|
"wide_resnet101_2", |
|
] |
|
|
|
|
|
model_urls = { |
|
"resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth", |
|
"resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", |
|
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", |
|
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", |
|
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", |
|
"resnext50_32x4d": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", |
|
"resnext101_32x8d": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", |
|
"wide_resnet50_2": "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth", |
|
"wide_resnet101_2": "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth", |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
__constants__ = ["downsample"] |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
__constants__ = ["downsample"] |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
): |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block, |
|
layers, |
|
num_classes=1000, |
|
zero_init_residual=False, |
|
groups=1, |
|
width_per_group=64, |
|
replace_stride_with_dilation=None, |
|
norm_layer=None, |
|
imagenet=False, |
|
): |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation) |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
|
|
print("The normalize layer is contained in the network") |
|
self.normalize = NormalizeByChannelMeanStd( |
|
mean=[0.4914, 0.4822, 0.4465], std=[0.2470, 0.2435, 0.2616] |
|
) |
|
|
|
if not imagenet: |
|
self.conv1 = nn.Conv2d( |
|
3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.Identity() |
|
else: |
|
self.conv1 = nn.Conv2d( |
|
3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer( |
|
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] |
|
) |
|
self.layer3 = self._make_layer( |
|
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] |
|
) |
|
self.layer4 = self._make_layer( |
|
block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2] |
|
) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride, |
|
downsample, |
|
self.groups, |
|
self.base_width, |
|
previous_dilation, |
|
norm_layer, |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x): |
|
|
|
x = self.normalize(x) |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
|
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
return self._forward_impl(x) |
|
|
|
|
|
def _resnet(arch, block, layers, pretrained, progress, **kwargs): |
|
model = ResNet(block, layers, **kwargs) |
|
if pretrained: |
|
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) |
|
model.load_state_dict(state_dict) |
|
return model |
|
|
|
|
|
def resnet18(pretrained=False, progress=True, **kwargs): |
|
r"""ResNet-18 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet("resnet18", BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) |
|
|
|
|
|
def resnet34(pretrained=False, progress=True, **kwargs): |
|
r"""ResNet-34 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet("resnet34", BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) |
|
|
|
|
|
def resnet50(pretrained=False, progress=True, **kwargs): |
|
r"""ResNet-50 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet("resnet50", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) |
|
|
|
|
|
def resnet101(pretrained=False, progress=True, **kwargs): |
|
r"""ResNet-101 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet( |
|
"resnet101", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def resnet152(pretrained=False, progress=True, **kwargs): |
|
r"""ResNet-152 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet( |
|
"resnet152", Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def resnext50_32x4d(pretrained=False, progress=True, **kwargs): |
|
r"""ResNeXt-50 32x4d model from |
|
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs["groups"] = 32 |
|
kwargs["width_per_group"] = 4 |
|
return _resnet( |
|
"resnext50_32x4d", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def resnext101_32x8d(pretrained=False, progress=True, **kwargs): |
|
r"""ResNeXt-101 32x8d model from |
|
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs["groups"] = 32 |
|
kwargs["width_per_group"] = 8 |
|
return _resnet( |
|
"resnext101_32x8d", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def wide_resnet50_2(pretrained=False, progress=True, **kwargs): |
|
r"""Wide ResNet-50-2 model from |
|
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ |
|
|
|
The model is the same as ResNet except for the bottleneck number of channels |
|
which is twice larger in every block. The number of channels in outer 1x1 |
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs["width_per_group"] = 64 * 2 |
|
return _resnet( |
|
"wide_resnet50_2", Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs |
|
) |
|
|
|
|
|
def wide_resnet101_2(pretrained=False, progress=True, **kwargs): |
|
r"""Wide ResNet-101-2 model from |
|
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ |
|
|
|
The model is the same as ResNet except for the bottleneck number of channels |
|
which is twice larger in every block. The number of channels in outer 1x1 |
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
kwargs["width_per_group"] = 64 * 2 |
|
return _resnet( |
|
"wide_resnet101_2", Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs |
|
) |
|
|