weitianhan commited on
Commit
436e518
·
verified ·
1 Parent(s): a7eeeea

Upload folder using huggingface_hub

Browse files
Files changed (8) hide show
  1. .gitattributes +7 -32
  2. README.md +311 -0
  3. config.json +25 -0
  4. model.safetensors +3 -0
  5. tf_model.h5 +3 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +1 -0
  8. vocab.txt +0 -0
.gitattributes CHANGED
@@ -1,35 +1,10 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
 
 
 
4
  *.h5 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
10
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
 
README.md ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - af
5
+ - sq
6
+ - ar
7
+ - an
8
+ - hy
9
+ - ast
10
+ - az
11
+ - ba
12
+ - eu
13
+ - bar
14
+ - be
15
+ - bn
16
+ - inc
17
+ - bs
18
+ - br
19
+ - bg
20
+ - my
21
+ - ca
22
+ - ceb
23
+ - ce
24
+ - zh
25
+ - cv
26
+ - hr
27
+ - cs
28
+ - da
29
+ - nl
30
+ - en
31
+ - et
32
+ - fi
33
+ - fr
34
+ - gl
35
+ - ka
36
+ - de
37
+ - el
38
+ - gu
39
+ - ht
40
+ - he
41
+ - hi
42
+ - hu
43
+ - is
44
+ - io
45
+ - id
46
+ - ga
47
+ - it
48
+ - ja
49
+ - jv
50
+ - kn
51
+ - kk
52
+ - ky
53
+ - ko
54
+ - la
55
+ - lv
56
+ - lt
57
+ - roa
58
+ - nds
59
+ - lm
60
+ - mk
61
+ - mg
62
+ - ms
63
+ - ml
64
+ - mr
65
+ - min
66
+ - ne
67
+ - new
68
+ - nb
69
+ - nn
70
+ - oc
71
+ - fa
72
+ - pms
73
+ - pl
74
+ - pt
75
+ - pa
76
+ - ro
77
+ - ru
78
+ - sco
79
+ - sr
80
+ - hr
81
+ - scn
82
+ - sk
83
+ - sl
84
+ - aze
85
+ - es
86
+ - su
87
+ - sw
88
+ - sv
89
+ - tl
90
+ - tg
91
+ - ta
92
+ - tt
93
+ - te
94
+ - tr
95
+ - uk
96
+ - ud
97
+ - uz
98
+ - vi
99
+ - vo
100
+ - war
101
+ - cy
102
+ - fry
103
+ - pnb
104
+ - yo
105
+ license: apache-2.0
106
+ datasets:
107
+ - wikipedia
108
+ ---
109
+
110
+ # BERT multilingual base model (uncased)
111
+
112
+ Pretrained model on the top 102 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
113
+ It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
114
+ [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
115
+ between english and English.
116
+
117
+ Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
118
+ the Hugging Face team.
119
+
120
+ ## Model description
121
+
122
+ BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
123
+ it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
124
+ publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
125
+ was pretrained with two objectives:
126
+
127
+ - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
128
+ the entire masked sentence through the model and has to predict the masked words. This is different from traditional
129
+ recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
130
+ GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
131
+ sentence.
132
+ - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
133
+ they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
134
+ predict if the two sentences were following each other or not.
135
+
136
+ This way, the model learns an inner representation of the languages in the training set that can then be used to
137
+ extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
138
+ standard classifier using the features produced by the BERT model as inputs.
139
+
140
+ ## Intended uses & limitations
141
+
142
+ You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
143
+ be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
144
+ fine-tuned versions on a task that interests you.
145
+
146
+ Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
147
+ to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
148
+ generation you should look at model like GPT2.
149
+
150
+ ### How to use
151
+
152
+ You can use this model directly with a pipeline for masked language modeling:
153
+
154
+ ```python
155
+ >>> from transformers import pipeline
156
+ >>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-uncased')
157
+ >>> unmasker("Hello I'm a [MASK] model.")
158
+
159
+ [{'sequence': "[CLS] hello i'm a top model. [SEP]",
160
+ 'score': 0.1507750153541565,
161
+ 'token': 11397,
162
+ 'token_str': 'top'},
163
+ {'sequence': "[CLS] hello i'm a fashion model. [SEP]",
164
+ 'score': 0.13075384497642517,
165
+ 'token': 23589,
166
+ 'token_str': 'fashion'},
167
+ {'sequence': "[CLS] hello i'm a good model. [SEP]",
168
+ 'score': 0.036272723227739334,
169
+ 'token': 12050,
170
+ 'token_str': 'good'},
171
+ {'sequence': "[CLS] hello i'm a new model. [SEP]",
172
+ 'score': 0.035954564809799194,
173
+ 'token': 10246,
174
+ 'token_str': 'new'},
175
+ {'sequence': "[CLS] hello i'm a great model. [SEP]",
176
+ 'score': 0.028643041849136353,
177
+ 'token': 11838,
178
+ 'token_str': 'great'}]
179
+ ```
180
+
181
+ Here is how to use this model to get the features of a given text in PyTorch:
182
+
183
+ ```python
184
+ from transformers import BertTokenizer, BertModel
185
+ tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
186
+ model = BertModel.from_pretrained("bert-base-multilingual-uncased")
187
+ text = "Replace me by any text you'd like."
188
+ encoded_input = tokenizer(text, return_tensors='pt')
189
+ output = model(**encoded_input)
190
+ ```
191
+
192
+ and in TensorFlow:
193
+
194
+ ```python
195
+ from transformers import BertTokenizer, TFBertModel
196
+ tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
197
+ model = TFBertModel.from_pretrained("bert-base-multilingual-uncased")
198
+ text = "Replace me by any text you'd like."
199
+ encoded_input = tokenizer(text, return_tensors='tf')
200
+ output = model(encoded_input)
201
+ ```
202
+
203
+ ### Limitations and bias
204
+
205
+ Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
206
+ predictions:
207
+
208
+ ```python
209
+ >>> from transformers import pipeline
210
+ >>> unmasker = pipeline('fill-mask', model='bert-base-multilingual-uncased')
211
+ >>> unmasker("The man worked as a [MASK].")
212
+
213
+ [{'sequence': '[CLS] the man worked as a teacher. [SEP]',
214
+ 'score': 0.07943806052207947,
215
+ 'token': 21733,
216
+ 'token_str': 'teacher'},
217
+ {'sequence': '[CLS] the man worked as a lawyer. [SEP]',
218
+ 'score': 0.0629938617348671,
219
+ 'token': 34249,
220
+ 'token_str': 'lawyer'},
221
+ {'sequence': '[CLS] the man worked as a farmer. [SEP]',
222
+ 'score': 0.03367974981665611,
223
+ 'token': 36799,
224
+ 'token_str': 'farmer'},
225
+ {'sequence': '[CLS] the man worked as a journalist. [SEP]',
226
+ 'score': 0.03172805905342102,
227
+ 'token': 19477,
228
+ 'token_str': 'journalist'},
229
+ {'sequence': '[CLS] the man worked as a carpenter. [SEP]',
230
+ 'score': 0.031021825969219208,
231
+ 'token': 33241,
232
+ 'token_str': 'carpenter'}]
233
+
234
+ >>> unmasker("The Black woman worked as a [MASK].")
235
+
236
+ [{'sequence': '[CLS] the black woman worked as a nurse. [SEP]',
237
+ 'score': 0.07045423984527588,
238
+ 'token': 52428,
239
+ 'token_str': 'nurse'},
240
+ {'sequence': '[CLS] the black woman worked as a teacher. [SEP]',
241
+ 'score': 0.05178029090166092,
242
+ 'token': 21733,
243
+ 'token_str': 'teacher'},
244
+ {'sequence': '[CLS] the black woman worked as a lawyer. [SEP]',
245
+ 'score': 0.032601192593574524,
246
+ 'token': 34249,
247
+ 'token_str': 'lawyer'},
248
+ {'sequence': '[CLS] the black woman worked as a slave. [SEP]',
249
+ 'score': 0.030507225543260574,
250
+ 'token': 31173,
251
+ 'token_str': 'slave'},
252
+ {'sequence': '[CLS] the black woman worked as a woman. [SEP]',
253
+ 'score': 0.027691684663295746,
254
+ 'token': 14050,
255
+ 'token_str': 'woman'}]
256
+ ```
257
+
258
+ This bias will also affect all fine-tuned versions of this model.
259
+
260
+ ## Training data
261
+
262
+ The BERT model was pretrained on the 102 languages with the largest Wikipedias. You can find the complete list
263
+ [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).
264
+
265
+ ## Training procedure
266
+
267
+ ### Preprocessing
268
+
269
+ The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
270
+ larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
271
+ Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character.
272
+
273
+ The inputs of the model are then of the form:
274
+
275
+ ```
276
+ [CLS] Sentence A [SEP] Sentence B [SEP]
277
+ ```
278
+
279
+ With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
280
+ the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
281
+ consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
282
+ "sentences" has a combined length of less than 512 tokens.
283
+
284
+ The details of the masking procedure for each sentence are the following:
285
+ - 15% of the tokens are masked.
286
+ - In 80% of the cases, the masked tokens are replaced by `[MASK]`.
287
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
288
+ - In the 10% remaining cases, the masked tokens are left as is.
289
+
290
+
291
+ ### BibTeX entry and citation info
292
+
293
+ ```bibtex
294
+ @article{DBLP:journals/corr/abs-1810-04805,
295
+ author = {Jacob Devlin and
296
+ Ming{-}Wei Chang and
297
+ Kenton Lee and
298
+ Kristina Toutanova},
299
+ title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
300
+ Understanding},
301
+ journal = {CoRR},
302
+ volume = {abs/1810.04805},
303
+ year = {2018},
304
+ url = {http://arxiv.org/abs/1810.04805},
305
+ archivePrefix = {arXiv},
306
+ eprint = {1810.04805},
307
+ timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
308
+ biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
309
+ bibsource = {dblp computer science bibliography, https://dblp.org}
310
+ }
311
+ ```
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "directionality": "bidi",
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "pooler_fc_size": 768,
19
+ "pooler_num_attention_heads": 12,
20
+ "pooler_num_fc_layers": 3,
21
+ "pooler_size_per_head": 128,
22
+ "pooler_type": "first_token_transform",
23
+ "type_vocab_size": 2,
24
+ "vocab_size": 105879
25
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b33adb2b700b7029a64a4a14ddec6bda8555d2ca879e80a75789fd9542a6290e
3
+ size 672247920
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77d2ed6e37792d0e3224dddf5d4b509c65d0e9fb131b97339598b852ccd83921
3
+ size 999358484
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "model_max_length": 512}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff