wetey
commited on
Commit
·
78dac5f
1
Parent(s):
6d62685
english trained model
Browse files- config.json +35 -0
- hierarchical_summarization.py +339 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0",
|
13 |
+
"1": "LABEL_1",
|
14 |
+
"2": "LABEL_2"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0,
|
19 |
+
"LABEL_1": 1,
|
20 |
+
"LABEL_2": 2
|
21 |
+
},
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"model_type": "distilbert",
|
24 |
+
"n_heads": 12,
|
25 |
+
"n_layers": 6,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"problem_type": "single_label_classification",
|
28 |
+
"qa_dropout": 0.1,
|
29 |
+
"seq_classif_dropout": 0.2,
|
30 |
+
"sinusoidal_pos_embds": false,
|
31 |
+
"tie_weights_": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.35.0",
|
34 |
+
"vocab_size": 30522
|
35 |
+
}
|
hierarchical_summarization.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from groq import Groq
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from scipy.cluster.hierarchy import linkage
|
5 |
+
import numpy as np
|
6 |
+
from scipy.cluster import hierarchy
|
7 |
+
from tqdm import tqdm
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from scipy.spatial.distance import cosine
|
10 |
+
|
11 |
+
def convert_labels(dataset):
|
12 |
+
labels = dataset.label.unique()
|
13 |
+
labels_mapping = {}
|
14 |
+
|
15 |
+
for label in labels:
|
16 |
+
pred = dataset.loc[dataset['label'] == label, 'label_y'].values[0]
|
17 |
+
labels_mapping[label] = pred
|
18 |
+
|
19 |
+
for label in labels_mapping:
|
20 |
+
dataset.loc[dataset.pred == label, 'pred_label'] = labels_mapping[label]
|
21 |
+
return dataset
|
22 |
+
|
23 |
+
def add_labels(dataset, original_dataset):
|
24 |
+
|
25 |
+
original_dataset = original_dataset.rename(columns={'text':'content'})
|
26 |
+
original_dataset = original_dataset[['content', 'label_y']]
|
27 |
+
#content column to compare with original dataset
|
28 |
+
dataset_content = dataset.content
|
29 |
+
#retrieve all columns for each row in test set from original dataset
|
30 |
+
subset_original_content = original_dataset.loc[original_dataset.content.isin(dataset_content)]
|
31 |
+
#merge dataframes
|
32 |
+
dataset = pd.merge(dataset, subset_original_content, on = 'content')
|
33 |
+
dataset = convert_labels(dataset)
|
34 |
+
|
35 |
+
return dataset
|
36 |
+
|
37 |
+
|
38 |
+
def tree_depth(node):
|
39 |
+
if node is None:
|
40 |
+
return 0
|
41 |
+
else:
|
42 |
+
left_depth = tree_depth(node.get_left())
|
43 |
+
right_depth = tree_depth(node.get_right())
|
44 |
+
return max(left_depth, right_depth) + 1
|
45 |
+
|
46 |
+
def reconstruct_tree(mergings, content):
|
47 |
+
tree = {}
|
48 |
+
for i, merge in enumerate(mergings):
|
49 |
+
#these are the leaves, they'll have an index less than the number of examples
|
50 |
+
if merge[0] <= len(mergings):
|
51 |
+
a = content[int(merge[0]) - 1]
|
52 |
+
else:
|
53 |
+
#if here then that's a merged cluster
|
54 |
+
a = tree[int(merge[0])]
|
55 |
+
#these are the leaves, they'll have an index less than the number of examples
|
56 |
+
if merge[1] <= len(mergings):
|
57 |
+
b = content[int(merge[1]) - 1]
|
58 |
+
else:
|
59 |
+
#if here then that's a merged cluster
|
60 |
+
b = tree[int(merge[1])]
|
61 |
+
tree[1 + i + len(mergings)] = [a,b]
|
62 |
+
return tree
|
63 |
+
|
64 |
+
#remove nested lists in branches and put all nodes in a 1-D list
|
65 |
+
def flatten(dict_list):
|
66 |
+
flat_list = []
|
67 |
+
for item in dict_list:
|
68 |
+
if isinstance(item, list):
|
69 |
+
flat_list.extend(flatten(item))
|
70 |
+
else:
|
71 |
+
flat_list.append(item)
|
72 |
+
return flat_list
|
73 |
+
|
74 |
+
#pass prompt to llm
|
75 |
+
def get_answer(prompt, system_prompt):
|
76 |
+
|
77 |
+
chat_completion = client.chat.completions.create(
|
78 |
+
messages=[
|
79 |
+
{
|
80 |
+
"role":"system",
|
81 |
+
"content":f"{system_prompt}"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"role": "user",
|
85 |
+
"content": f"{prompt}",
|
86 |
+
}
|
87 |
+
],
|
88 |
+
model="mixtral-8x7b-32768"
|
89 |
+
)
|
90 |
+
return chat_completion.choices[0].message.content
|
91 |
+
|
92 |
+
#pass two leaves to the llm and get a list of their similarities
|
93 |
+
#leaf will have the content, predicted label, and actual label
|
94 |
+
def merge_two_leaves(leaf_0, leaf_1):
|
95 |
+
|
96 |
+
system_prompt =f'You are given two statements from an offensive language dataset that were misclassified by an offensive language detection system. Analyze the two statements thoroughly and provide a bullet list explanation of the similarities between the two statements. Your list should have the following format: * Error_Feature: <Explanation> where Error_Feature: is a two word discription of the feature and Explanation is a one sentence explanation of the feature. Make sure to stick to the format specified. Avoid making explicit references to the examples and use layman terms for the explanations.'
|
97 |
+
|
98 |
+
prompt = f'Statement_0: {leaf_0.content}\npredicted_label_0: {leaf_0.predicted_label}\nactual_label_0: {leaf_0.actual_label}\n\nStatement_1: {leaf_1.content}\npredicted_label_1: {leaf_1.predicted_label}\nactual_label_1: {leaf_1.actual_label}\n\nList: '
|
99 |
+
|
100 |
+
#pass prompts to llm and get answer
|
101 |
+
base_list = get_answer(prompt, system_prompt)
|
102 |
+
|
103 |
+
return base_list
|
104 |
+
|
105 |
+
#case 2: pass leaf (with content, predicted label, and actual label) and the list previously generated
|
106 |
+
def applies(leaf, list, threshold = 2): #another way to do this would be to split the list and check every bullet points -> more api calls
|
107 |
+
|
108 |
+
system_prompt = f"You are given a statement from an offensive language dataset that was misclassified by an offensive language detection system. In addition, you are given a list of features generated by an LLM for other statements that were misclassified. Perform a thorough analysis of the statement and the list. If at least {threshold} points apply to the statement return YES otherwise return NO."
|
109 |
+
|
110 |
+
prompt = f"Statement: {leaf.content}\npredicted_label: {leaf.predicted_label}\nactual_label: {leaf.actual_label}\n\nList: {list}\n\nAnswer: "
|
111 |
+
|
112 |
+
#convert answer to all lower case to avoid llm inconsistency
|
113 |
+
check = get_answer(prompt, system_prompt).lower()
|
114 |
+
|
115 |
+
#if yes return true otherwise return false
|
116 |
+
return 'yes' in check
|
117 |
+
|
118 |
+
def merge_leaf(leaf, list):
|
119 |
+
|
120 |
+
system_prompt = f"You are given a statement from an offensive language dataset that was misclassified by an offensive language detection system. In addition, you are given a list of features generated by an LLM for other statements that were misclassified. Make the minimal changes so the list also applies to the given statement. Maintain the same format * Error_Feature: <Explanation> where Error_Feature: is a two word discription of the feature and Explanation is a one sentence explanation of the feature. Make sure to stick to the format specified. Avoid making explicit references to the examples and use layman terms for the explanations. "
|
121 |
+
|
122 |
+
prompt = f"Statement: {leaf.content}\npredicted_label: {leaf.predicted_label}\nactual_label: {leaf.actual_label}\n\nList: {list}\n\nUpdated list: "
|
123 |
+
|
124 |
+
if applies(leaf, list):
|
125 |
+
return 'edited', get_answer(prompt, system_prompt)
|
126 |
+
else:
|
127 |
+
return 'not edited', list
|
128 |
+
|
129 |
+
def get_bullet_points(list):
|
130 |
+
#split on new line to get the individual bullet points
|
131 |
+
return list.split('\n')
|
132 |
+
|
133 |
+
def construct_bipartite_graph(bullet_list_0, bullet_list_1):
|
134 |
+
bipartite_graph = []
|
135 |
+
for first in bullet_list_0: #o(n)
|
136 |
+
for second in bullet_list_1: #o(m)
|
137 |
+
if ((first, second) and (second, first)) not in bipartite_graph: #check pair is not already in list, order doesn't matter, o(k)
|
138 |
+
bipartite_graph.append((first,second))
|
139 |
+
return bipartite_graph
|
140 |
+
|
141 |
+
def sbert_embeddings(bipartite_graph):
|
142 |
+
sbert_bipartite_graph = []
|
143 |
+
for pair in bipartite_graph:
|
144 |
+
first = sbert_model.encode(pair[0])
|
145 |
+
second = sbert_model.encode(pair[1])
|
146 |
+
sbert_bipartite_graph.append((first, second))
|
147 |
+
return sbert_bipartite_graph
|
148 |
+
|
149 |
+
def compute_cosine_similarity(sbert_bipartite_embeddings):
|
150 |
+
cosine_similarity = []
|
151 |
+
for pair in sbert_bipartite_embeddings:
|
152 |
+
similarity = 1 - cosine(pair[0], pair[1])
|
153 |
+
cosine_similarity.append(similarity)
|
154 |
+
return cosine_similarity
|
155 |
+
|
156 |
+
def combine(cosine_similarity, bipartite_graph, similarity_threshold):
|
157 |
+
pairs_to_combine = []
|
158 |
+
for index in range(len(cosine_similarity)):
|
159 |
+
if cosine_similarity[index] > similarity_threshold: #there needs to be a different threshold/criteria
|
160 |
+
pairs_to_combine.append(bipartite_graph[index])
|
161 |
+
return pairs_to_combine
|
162 |
+
|
163 |
+
#check the overlap between the two lists
|
164 |
+
def overlap(list_0, list_1, overlap_threshold = 0.5, similarity_threshold = 0.75):
|
165 |
+
#step 0: separate the list to individual bullet points
|
166 |
+
bullet_list_0 = get_bullet_points(list_0)
|
167 |
+
bullet_list_1 = get_bullet_points(list_1)
|
168 |
+
|
169 |
+
#step 1: construct a bipartite graph
|
170 |
+
bipartite_graph = construct_bipartite_graph(bullet_list_0, bullet_list_1)
|
171 |
+
|
172 |
+
#step 2: compute the sbert embeddings
|
173 |
+
sbert_bipartite_graph = sbert_embeddings(bipartite_graph)
|
174 |
+
|
175 |
+
#step 3: calculate the cosine similarity
|
176 |
+
cosine_similarity = compute_cosine_similarity(sbert_bipartite_graph)
|
177 |
+
|
178 |
+
#step 4: if similarity above threshold -> combine otherwise leave as separate
|
179 |
+
pairs_to_combine = combine(cosine_similarity, bipartite_graph, similarity_threshold)
|
180 |
+
|
181 |
+
#step 5: increment overlap score
|
182 |
+
overlap_score = len(pairs_to_combine) / len(bipartite_graph)
|
183 |
+
|
184 |
+
#step 6: if score is more than overlap_threshold -> pair should be combined (save this pair)
|
185 |
+
return overlap_score > overlap_threshold, bipartite_graph, pairs_to_combine
|
186 |
+
|
187 |
+
def union(bipartite_graph, pairs_to_combine):
|
188 |
+
|
189 |
+
#to get the union
|
190 |
+
#step 0: remove the pairs_to_combine from bipartite_graph
|
191 |
+
bipartite_graph = [pair for pair in bipartite_graph if pair not in pairs_to_combine]
|
192 |
+
|
193 |
+
#step 1: remove all the pairs where one of the elements is also in pairs_to_combine
|
194 |
+
#step 1.1: convert pair_to_combine to a set
|
195 |
+
distinct_features = set()
|
196 |
+
for pair in pairs_to_combine:
|
197 |
+
distinct_features.add(pair[0])
|
198 |
+
distinct_features.add(pair[1])
|
199 |
+
|
200 |
+
#step 1.2: remove the any pairs that have elements in pairs_to_combine
|
201 |
+
bipartite_graph = [pair for pair in bipartite_graph if pair[0] or pair[1] not in distinct_features]
|
202 |
+
|
203 |
+
dont_combine = set()
|
204 |
+
for pair in bipartite_graph:
|
205 |
+
dont_combine.add(pair[0])
|
206 |
+
dont_combine.add(pair[1])
|
207 |
+
|
208 |
+
return dont_combine
|
209 |
+
|
210 |
+
#take the union between the lists
|
211 |
+
def list_union(bipartite_graph, pairs_to_combine):
|
212 |
+
|
213 |
+
dont_combine = union(bipartite_graph, pairs_to_combine)
|
214 |
+
union_list = '\n'.join(dont_combine)
|
215 |
+
|
216 |
+
system_prompt = f"You are given two bullet points generated to explain similarities between statements. You are tasked to combine these two bullet points into one. Make sure to maintain the same format * Error_Feature: <Explanation> where Error_Feature: is a two word discription of the feature and Explanation is a one sentence explanation of the feature. Make sure to stick to the format specified."
|
217 |
+
|
218 |
+
for pair in pairs_to_combine:
|
219 |
+
prompt = f"First point: {pair[0]}\n\nSecond point: {pair[1]}\n\nNew point: "
|
220 |
+
union_list += get_answer(prompt, system_prompt) + '\n'
|
221 |
+
|
222 |
+
return union_list
|
223 |
+
|
224 |
+
#read data
|
225 |
+
dataset = pd.read_json("improved_english/clusters/baseline_sb.json")
|
226 |
+
original_dataset = pd.read_csv('clusters/mhs_lhs_errors.csv')
|
227 |
+
|
228 |
+
#this is using one of the sbert clustering but we just want to the embeddings and content (maybe labels)
|
229 |
+
dataset.drop(['slice', 'centroid', 'cluster'], inplace=True, axis=1)
|
230 |
+
dataset = add_labels(dataset, original_dataset)
|
231 |
+
dataset = dataset.rename(columns={'label_y':'actual_label', 'pred_label':'predicted_label'})
|
232 |
+
|
233 |
+
#generate the hierarchical tree
|
234 |
+
mergings = linkage(np.array(dataset.embedding.to_list()), method='complete', metric='cosine')
|
235 |
+
|
236 |
+
#convert to a tree to traverse
|
237 |
+
root, nodelist = hierarchy.to_tree(mergings, rd = True)
|
238 |
+
|
239 |
+
#construct tree using examples
|
240 |
+
tree = reconstruct_tree(mergings, dataset.content.to_list())
|
241 |
+
|
242 |
+
client = Groq(
|
243 |
+
api_key=os.environ.get("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"),
|
244 |
+
)
|
245 |
+
#load sbert model
|
246 |
+
sbert_model = SentenceTransformer('all-distilroberta-v1')
|
247 |
+
|
248 |
+
#store the intermediate steps
|
249 |
+
intermediate_steps = []
|
250 |
+
end_summaries = []
|
251 |
+
|
252 |
+
for id, node in tqdm(enumerate(mergings)):
|
253 |
+
|
254 |
+
#first case: if both are leaves -> send to llm
|
255 |
+
if node[0] <= len(mergings) and node[1] <= len(mergings):
|
256 |
+
#pass two leaves
|
257 |
+
leaf_0 = dataset.iloc[[int(node[0])]]
|
258 |
+
leaf_1 = dataset.iloc[[int(node[1])]]
|
259 |
+
leaf_list = merge_two_leaves(leaf_0, leaf_1)
|
260 |
+
current = {'id': int(id + len(mergings) + 1), #index in mergings DS + number of clusters idk if this correct
|
261 |
+
'examples': [[leaf_0.content,
|
262 |
+
leaf_0.predicted_label,
|
263 |
+
leaf_0.actual_label,
|
264 |
+
int(node[0])],
|
265 |
+
[leaf_1.content,
|
266 |
+
leaf_1.predicted_label,
|
267 |
+
leaf_1.actual_label,
|
268 |
+
int(node[1])]],
|
269 |
+
'bullet_list': leaf_list,
|
270 |
+
'edited': 'both are leaves',
|
271 |
+
'previous_list': 'base list'}
|
272 |
+
|
273 |
+
#second case: if you're merging a leaf to a merged cluster -> send to check if it applies
|
274 |
+
elif (node[0] >= len(mergings)) ^ (node[1] >= len(mergings)):
|
275 |
+
|
276 |
+
#use the cluster id of the merged list to get the previous list
|
277 |
+
if node[0] <= len(mergings):
|
278 |
+
leaf = dataset.iloc[[int(node[0])]]
|
279 |
+
previous_list = int(node[1]) #this is the id
|
280 |
+
leaf_id = int(node[0])
|
281 |
+
else: #I don't think this will ever be executed idk
|
282 |
+
leaf = dataset.iloc[[int(node[1])]]
|
283 |
+
previous_list = int(node[0]) #this is the id
|
284 |
+
leaf_id = int(node[1])
|
285 |
+
|
286 |
+
previous_bullet_list = next(item for item in intermediate_steps if item['id'] == previous_list)
|
287 |
+
previous_bullet_list = previous_bullet_list['bullet_list']
|
288 |
+
|
289 |
+
#pass the previous list
|
290 |
+
edited, merged_leaf = merge_leaf(leaf, previous_bullet_list) #hyperparameter threshold (how many points apply to the example)
|
291 |
+
|
292 |
+
#store the list and examples and verdict so they're easy to retrieve
|
293 |
+
current = {'id':int(id + len(mergings) + 1), #index in mergings DS + number of clusters
|
294 |
+
'examples': [leaf.content,
|
295 |
+
leaf.predicted_label,
|
296 |
+
leaf.actual_label,
|
297 |
+
leaf_id],
|
298 |
+
'bullet_list': merged_leaf,
|
299 |
+
'edited': edited,
|
300 |
+
'previous_list':previous_list
|
301 |
+
}
|
302 |
+
|
303 |
+
#third case: merging to clusters
|
304 |
+
else:
|
305 |
+
#get the list generated at each node
|
306 |
+
list_0 = next(item for item in intermediate_steps if item['id'] == int(node[0]))
|
307 |
+
list_0_id = list_0['bullet_list']
|
308 |
+
|
309 |
+
list_1 = next(item for item in intermediate_steps if item['id'] == int(node[1]))
|
310 |
+
list_1_id = list_1['bullet_list']
|
311 |
+
|
312 |
+
#if there is "enough" overlap merge the cluster
|
313 |
+
enough, bipartite_graph, pairs_to_combine = overlap(list_0_id,list_1_id)
|
314 |
+
|
315 |
+
if enough:
|
316 |
+
union_list = list_union(bipartite_graph, pairs_to_combine)
|
317 |
+
current = {'id':int(id + len(mergings) + 1), #index in mergings DS + number of clusters
|
318 |
+
'examples': [list_0['id'],
|
319 |
+
list_1['id']],
|
320 |
+
'bullet_list': union_list,
|
321 |
+
'edited': 'merging two clusters',
|
322 |
+
'previous_list':'enough overlap to merge'
|
323 |
+
}
|
324 |
+
|
325 |
+
#not enough overlap, separate into two clusters
|
326 |
+
else:
|
327 |
+
print('not merging')
|
328 |
+
end_summaries.append(list_0)
|
329 |
+
end_summaries.append(list_1)
|
330 |
+
|
331 |
+
intermediate_steps.append(current)
|
332 |
+
if id == 118:
|
333 |
+
break
|
334 |
+
|
335 |
+
intermediate_steps = pd.DataFrame(intermediate_steps)
|
336 |
+
intermediate_steps.to_json('intermediate_steps.json', orient='records', indent=4)
|
337 |
+
|
338 |
+
end_summaries = pd.DataFrame(end_summaries)
|
339 |
+
end_summaries.to_json('end_summaries.json', orient='records', indent=4)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7349f9baca3d6850992cb5c8ef7047b347d06ce95768e63e1a11ec3dd66c39fd
|
3 |
+
size 267835644
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "DistilBertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|