--- language: ba language_name: Bashkir language_family: turkic_kipchak tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-turkic_kipchak license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.674 - name: best_isotropy type: isotropy value: 0.7711 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Bashkir - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Bashkir** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.561x | 3.56 | 0.3982% | 1,530,967 | | **16k** | 3.999x | 4.00 | 0.4471% | 1,363,432 | | **32k** | 4.374x | 4.38 | 0.4891% | 1,246,440 | | **64k** | 4.674x 🏆 | 4.68 | 0.5226% | 1,166,431 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Нортленд - (ҡитға исеме) лағы дәүләт. Иҫкәрмәләр Һылтанмалар` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁н орт лен д ▁- ▁( ҡит ға ▁исеме ) ... (+6 more)` | 16 | | 16k | `▁н орт ленд ▁- ▁( ҡит ға ▁исеме ) ▁лағы ... (+4 more)` | 14 | | 32k | `▁н орт ленд ▁- ▁( ҡитға ▁исеме ) ▁лағы ▁дәүләт ... (+3 more)` | 13 | | 64k | `▁норт ленд ▁- ▁( ҡитға ▁исеме ) ▁лағы ▁дәүләт . ... (+2 more)` | 12 | **Sample 2:** `Австралия — Көньяҡ ярымшарҙарҙа урынлашҡан дәүләт. Австралия (ҡитға) — Көнсығыш ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁австр алия ▁— ▁көньяҡ ▁ярым шар ҙарҙа ▁урынлашҡан ▁дәүләт . ... (+18 more)` | 28 | | 16k | `▁австралия ▁— ▁көньяҡ ▁ярымшар ҙарҙа ▁урынлашҡан ▁дәүләт . ▁австралия ▁( ... (+13 more)` | 23 | | 32k | `▁австралия ▁— ▁көньяҡ ▁ярымшар ҙарҙа ▁урынлашҡан ▁дәүләт . ▁австралия ▁( ... (+11 more)` | 21 | | 64k | `▁австралия ▁— ▁көньяҡ ▁ярымшар ҙарҙа ▁урынлашҡан ▁дәүләт . ▁австралия ▁( ... (+11 more)` | 21 | **Sample 3:** `йыл — йәкшәмбе көнөнән башланған йыл, кәбисә түгел. Ваҡиғалар Тыуғандар Вафат бу...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁йыл ▁— ▁й әк шәмбе ▁көнөнән ▁башланған ▁йыл , ▁кәбисә ... (+10 more)` | 20 | | 16k | `▁йыл ▁— ▁йәкшәмбе ▁көнөнән ▁башланған ▁йыл , ▁кәбисә ▁түгел . ... (+8 more)` | 18 | | 32k | `▁йыл ▁— ▁йәкшәмбе ▁көнөнән ▁башланған ▁йыл , ▁кәбисә ▁түгел . ... (+8 more)` | 18 | | 64k | `▁йыл ▁— ▁йәкшәмбе ▁көнөнән ▁башланған ▁йыл , ▁кәбисә ▁түгел . ... (+8 more)` | 18 | ### Key Findings - **Best Compression:** 64k achieves 4.674x compression - **Lowest UNK Rate:** 8k with 0.3982% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 56,272 | 15.78 | 432,191 | 13.8% | 30.4% | | **2-gram** | Subword | 488 🏆 | 8.93 | 13,737 | 52.3% | 96.8% | | **3-gram** | Word | 53,798 | 15.72 | 562,854 | 18.1% | 34.8% | | **3-gram** | Subword | 4,221 | 12.04 | 117,501 | 18.9% | 58.6% | | **4-gram** | Word | 61,592 | 15.91 | 881,988 | 19.4% | 36.9% | | **4-gram** | Subword | 21,484 | 14.39 | 685,600 | 10.3% | 33.2% | | **5-gram** | Word | 37,893 | 15.21 | 658,444 | 21.5% | 41.3% | | **5-gram** | Subword | 72,234 | 16.14 | 2,075,140 | 7.0% | 23.5% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `гө буйынса` | 60,195 | | 2 | `һыу реестры` | 40,405 | | 3 | `дәүләт һыу` | 40,403 | | 4 | `йылға бассейны` | 40,327 | | 5 | `рәсәй федерацияһы` | 37,239 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `һыу реестры мәғлүмәттәре` | 20,323 | | 2 | `дәүләт һыу реестры` | 20,208 | | 3 | `рәсәй дәүләт һыу` | 20,202 | | 4 | `мәғлүмәттәре рәсәй дәүләт` | 20,170 | | 5 | `реестры мәғлүмәттәре рәсәй` | 20,170 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рәсәй дәүләт һыу реестры` | 20,195 | | 2 | `реестры мәғлүмәттәре рәсәй дәүләт` | 20,170 | | 3 | `мәғлүмәттәре рәсәй дәүләт һыу` | 20,170 | | 4 | `һыу реестры мәғлүмәттәре рәсәй` | 20,167 | | 5 | `дәүләт һыу реестрында һыу` | 20,160 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `реестры мәғлүмәттәре рәсәй дәүләт һыу` | 20,170 | | 2 | `һыу реестры мәғлүмәттәре рәсәй дәүләт` | 20,167 | | 3 | `мәғлүмәттәре рәсәй дәүләт һыу реестры` | 20,165 | | 4 | `һыу реестрында һыу объектының коды` | 20,156 | | 5 | `дәүләт һыу реестрында һыу объектының` | 20,156 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `а _` | 2,391,231 | | 2 | `а р` | 2,191,202 | | 3 | `ы _` | 2,097,776 | | 4 | `_ б` | 2,006,204 | | 5 | `а н` | 1,864,458 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ й ы` | 754,633 | | 2 | `й ы л` | 743,969 | | 3 | `н д а` | 676,936 | | 4 | `а н _` | 651,892 | | 5 | `ы ң _` | 646,394 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ й ы л` | 707,090 | | 2 | `ы н д а` | 467,625 | | 3 | `_ һ ә м` | 441,510 | | 4 | `һ ә м _` | 439,610 | | 5 | `н д а _` | 408,202 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ һ ә м _` | 438,718 | | 2 | `ы н д а _` | 353,882 | | 3 | `_ й ы л д` | 323,522 | | 4 | `й ы л ғ а` | 269,201 | | 5 | `_ й ы л ғ` | 262,857 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 488 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~23% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.8991 | 1.865 | 8.98 | 912,874 | 10.1% | | **1** | Subword | 0.9900 | 1.986 | 7.47 | 5,662 | 1.0% | | **2** | Word | 0.2746 | 1.210 | 1.74 | 8,193,331 | 72.5% | | **2** | Subword | 0.8598 | 1.815 | 5.90 | 42,271 | 14.0% | | **3** | Word | 0.0885 | 1.063 | 1.17 | 14,249,949 | 91.1% | | **3** | Subword | 0.8239 | 1.770 | 4.71 | 249,519 | 17.6% | | **4** | Word | 0.0321 🏆 | 1.023 | 1.05 | 16,595,241 | 96.8% | | **4** | Subword | 0.7025 | 1.627 | 3.37 | 1,174,607 | 29.7% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `һәм пәйғәмбәр аша ҡулға алалар диск ҡалын һуҙынҡылы ижеккә төшә көнбайыш конференцияһын әҙерләүҙә ул...` 2. `буйынса журналистар үҙҙәрен римляндар өсөн рәссам булараҡ игорь задорожный игорь а сатаров в н г сах...` 3. `һыу һәм төрлө биҙәгәндәр был блюдоның консистенцияһында исеменең типовой проект ҡаты алыштарҙа дошма...` **Context Size 2:** 1. `гө буйынса сығарылыш 2 фаунаһы йылға мәғлүмәттәр буйынса аҙсылыҡтан император гвардияһы училищеһында...` 2. `һыу реестры мәғлүмәттәре рәсәй дәүләт һыу реестры мәғлүмәттәре рәсәй дәүләт һыу реестрында һыу объек...` 3. `дәүләт һыу реестры мәғлүмәттәре рәсәй дәүләт өлгөһөндәге диплом осоу аппараттарын ҡулланыуҙы көйләү ...` **Context Size 3:** 1. `һыу реестры мәғлүмәттәре рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға двина печора һыу бассейны ...` 2. `дәүләт һыу реестры мәғлүмәте буйынса йылға двина печора һыу бассейны округында урынлашҡан һыу хужалы...` 3. `рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға кама һыу һаклағысы чусов сылвин ҡултығы һул ярына т...` **Context Size 4:** 1. `рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға кама һыу бассейны округында урынлашҡан һыу хужалығы...` 2. `мәғлүмәттәре рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға көнбыйыш каспий һыу бассейны округында...` 3. `реестры мәғлүмәттәре рәсәй дәүләт һыу реестры мәғлүмәте буйынса йылға кама һыу бассейны округында ур...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_хрм_илға._—_брл` 2. `атемлашылларулең` 3. `ралүеүмәмка_ты_а` **Context Size 2:** 1. `а_ра_һуң_съ_идери` 2. `ар._энты_хайындат` 3. `ы_—_буягацияһальс` **Context Size 3:** 1. `_йыл_17_дек_тип_ик` 2. `йылдығыштабыуат_ге` 3. `ндағы_мәғилми_хеҙм` **Context Size 4:** 1. `_йылдан_булат_ҡулты` 2. `ындағы_ҡарағыҙ_барғ` 3. `_һәм_бөтә_советы,_п` ### Key Findings - **Best Predictability:** Context-4 (word) with 96.8% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (1,174,607 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 390,661 | | Total Tokens | 21,477,387 | | Mean Frequency | 54.98 | | Median Frequency | 4 | | Frequency Std Dev | 1227.90 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | һәм | 441,701 | | 2 | буйынса | 199,502 | | 3 | һыу | 168,327 | | 4 | менән | 154,212 | | 5 | йылға | 141,020 | | 6 | йылда | 136,113 | | 7 | рәсәй | 107,301 | | 8 | йыл | 96,991 | | 9 | йылдың | 89,541 | | 10 | бассейны | 87,464 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | совкомбанк | 2 | | 2 | маркетплейстың | 2 | | 3 | суларға | 2 | | 4 | кишлак | 2 | | 5 | пацанский | 2 | | 6 | мунден | 2 | | 7 | гертфордшир | 2 | | 8 | кроуға | 2 | | 9 | франклоу | 2 | | 10 | алтынкүлдән | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0499 | | R² (Goodness of Fit) | 0.992209 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 23.9% | | Top 1,000 | 52.3% | | Top 5,000 | 71.5% | | Top 10,000 | 78.6% | ### Key Findings - **Zipf Compliance:** R²=0.9922 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 23.9% of corpus - **Long Tail:** 380,661 words needed for remaining 21.4% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.7605 | 0.3607 | N/A | N/A | | **mono_64d** | 64 | 0.7711 🏆 | 0.2817 | N/A | N/A | | **mono_128d** | 128 | 0.7589 | 0.2238 | N/A | N/A | | **aligned_32d** | 32 | 0.7605 | 0.3651 | 0.0420 | 0.2620 | | **aligned_64d** | 64 | 0.7711 | 0.2829 | 0.0820 | 0.3600 | | **aligned_128d** | 128 | 0.7589 | 0.2231 | 0.1140 | 0.4340 | ### Key Findings - **Best Isotropy:** mono_64d with 0.7711 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2896. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 11.4% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.762** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-а` | менеджерҙарға, клиентела, пегаға | | `-ың` | амфитеатрының, лединың, ғәлиәкбәровтың | | `-ан` | ҡыҙылдарҙан, саутунан, сығылған | | `-ар` | андекстар, имплантаттар, тартыуҙар | | `-ға` | менеджерҙарға, пегаға, ҡалыуға | | `-ның` | амфитеатрының, лединың, соустарының | | `-на` | градина, ағзаһына, катилина | | `-ов` | крестов, әбшәрипов, протезов | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `ссей` | 3.12x | 29 contexts | шоссей, иессей, бассей | | `олог` | 1.84x | 205 contexts | лолог, полог, молог | | `әүлә` | 2.51x | 39 contexts | дәүлә, хәүлә, шәүлә | | `ассе` | 2.28x | 57 contexts | массе, хассе, гассе | | `шҡор` | 3.03x | 15 contexts | башҡор, башҡорт, башҡорд | | `лған` | 1.54x | 230 contexts | ялған, ҡлған, алған | | `арҙы` | 1.62x | 168 contexts | парҙы, сарҙы, барҙы | | `арҙа` | 1.48x | 266 contexts | барҙа, арҙан, арҙат | | `аһын` | 1.35x | 378 contexts | шаһын, анаһын, яһаһын | | `ттар` | 1.37x | 344 contexts | аттар, юттар, ттары | | `ылға` | 1.49x | 213 contexts | йылға, ҡылға, ылғал | | `лдар` | 1.45x | 236 contexts | алдар, ялдар, улдар | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. *No significant affix co-occurrences detected.* ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | александровна | **`александр-ов-на`** | 6.0 | `александр` | | мессинаның | **`месси-на-ның`** | 6.0 | `месси` | | салаватовна | **`салават-ов-на`** | 6.0 | `салават` | | терракотанан | **`терракот-ан-ан`** | 6.0 | `терракот` | | моденаның | **`моде-на-ның`** | 6.0 | `моде` | | доломанов | **`долом-ан-ов`** | 6.0 | `долом` | | склонениеһына | **`склонениеһы-на`** | 4.5 | `склонениеһы` | | характеров | **`характер-ов`** | 4.5 | `характер` | | ваҡытының | **`ваҡыты-ның`** | 4.5 | `ваҡыты` | | кейекбайға | **`кейекбай-ға`** | 4.5 | `кейекбай` | | фомичёваның | **`фомичёва-ның`** | 4.5 | `фомичёва` | | никаноров | **`никанор-ов`** | 4.5 | `никанор` | | терапияһынан | **`терапияһын-ан`** | 4.5 | `терапияһын` | | телевидениеһынан | **`телевидениеһын-ан`** | 4.5 | `телевидениеһын` | | сепаратизмына | **`сепаратизмы-на`** | 4.5 | `сепаратизмы` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Bashkir shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.67x) | | N-gram | **2-gram** | Lowest perplexity (488) | | Markov | **Context-4** | Highest predictability (96.8%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 20:08:48*