omarkamali commited on
Commit
80c9cf3
·
verified ·
1 Parent(s): 6198255

Upload all models and assets for cu (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +210 -173
  3. models/embeddings/aligned/cu_128d.bin +3 -0
  4. models/embeddings/aligned/cu_128d.meta.json +1 -0
  5. models/embeddings/aligned/cu_128d.projection.npy +3 -0
  6. models/embeddings/aligned/cu_128d_metadata.json +8 -0
  7. models/embeddings/aligned/cu_32d.bin +3 -0
  8. models/embeddings/aligned/cu_32d.meta.json +1 -0
  9. models/embeddings/aligned/cu_32d.projection.npy +3 -0
  10. models/embeddings/aligned/cu_32d_metadata.json +8 -0
  11. models/embeddings/aligned/cu_64d.bin +3 -0
  12. models/embeddings/aligned/cu_64d.meta.json +1 -0
  13. models/embeddings/aligned/cu_64d.projection.npy +3 -0
  14. models/embeddings/aligned/cu_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/cu_128d.bin +2 -2
  16. models/embeddings/monolingual/cu_128d_metadata.json +1 -1
  17. models/embeddings/monolingual/cu_32d.bin +2 -2
  18. models/embeddings/monolingual/cu_32d_metadata.json +1 -1
  19. models/embeddings/monolingual/cu_64d.bin +2 -2
  20. models/embeddings/monolingual/cu_64d_metadata.json +1 -1
  21. models/subword_markov/cu_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/cu_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/cu_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/cu_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/cu_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/cu_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/cu_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/cu_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/cu_2gram_subword.parquet +2 -2
  30. models/subword_ngram/cu_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/cu_3gram_subword.parquet +2 -2
  32. models/subword_ngram/cu_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/cu_4gram_subword.parquet +2 -2
  34. models/subword_ngram/cu_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/cu_5gram_subword.parquet +3 -0
  36. models/subword_ngram/cu_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/cu_tokenizer_16k.model +2 -2
  38. models/tokenizer/cu_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/cu_tokenizer_32k.model +2 -2
  40. models/tokenizer/cu_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/cu_tokenizer_8k.model +2 -2
  42. models/tokenizer/cu_tokenizer_8k.vocab +0 -0
  43. models/vocabulary/cu_vocabulary.parquet +2 -2
  44. models/vocabulary/cu_vocabulary_metadata.json +9 -9
  45. models/word_markov/cu_markov_ctx1_word.parquet +2 -2
  46. models/word_markov/cu_markov_ctx1_word_metadata.json +2 -2
  47. models/word_markov/cu_markov_ctx2_word.parquet +2 -2
  48. models/word_markov/cu_markov_ctx2_word_metadata.json +2 -2
  49. models/word_markov/cu_markov_ctx3_word.parquet +2 -2
  50. models/word_markov/cu_markov_ctx3_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: cu
3
- language_name: CU
4
  language_family: slavic_historical
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-slavic_historical
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.945
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.2996
30
  - name: vocabulary_size
31
  type: vocab
32
  value: 0
33
  generated: 2026-01-03
34
  ---
35
 
36
- # CU - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **CU** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
- - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
  - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
@@ -80,43 +90,43 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
- | **8k** | 3.879x | 3.88 | 0.1306% | 107,930 |
84
- | **16k** | 4.369x | 4.37 | 0.1472% | 95,813 |
85
- | **32k** | 4.945x 🏆 | 4.95 | 0.1666% | 84,659 |
86
 
87
  ### Tokenization Examples
88
 
89
  Below are sample sentences tokenized with each vocabulary size:
90
 
91
- **Sample 1:** `thumb (имѧ Ꙋкрестъ) словѣньскаѥго ѩꙁꙑка боукꙑ ѥстъ. ѩꙁꙑка боукъви`
92
 
93
  | Vocab | Tokens | Count |
94
  |-------|--------|-------|
95
- | 8k | `▁thumb ▁( имѧ ▁ꙋ к ре стъ ) ... (+7 more)` | 17 |
96
- | 16k | `▁thumb ▁( имѧ ▁ꙋ кре стъ ) ▁словѣньскаѥго ... (+6 more)` | 16 |
97
- | 32k | `▁thumb ▁( имѧ ▁ꙋкрестъ ) ▁словѣньскаѥго ▁ѩꙁꙑка ▁боукꙑ ... (+4 more)` | 14 |
98
 
99
- **Sample 2:** `Могилєвъ и · · градъ Бѣлꙑ Роуси ѥстъ ⁙ Людии обитаѥтъ 371 318 ⁙ Помѣновєнъ жє ꙁа...`
100
 
101
  | Vocab | Tokens | Count |
102
  |-------|--------|-------|
103
- | 8k | `▁могилєвъ ▁и ▁· ▁· ▁градъ ▁бѣлꙑ ▁роуси ▁ѥстъ ▁⁙ ▁людии ... (+31 more)` | 41 |
104
- | 16k | `▁могилєвъ ▁и ▁· ▁· ▁градъ ▁бѣлꙑ ▁роуси ▁ѥстъ ▁⁙ ▁людии ... (+28 more)` | 38 |
105
- | 32k | `▁могилєвъ ▁и ▁· ▁· ▁градъ ▁бѣлꙑ ▁роуси ▁ѥстъ ▁⁙ ▁людии ... (+27 more)` | 37 |
106
 
107
- **Sample 3:** `thumb Ѱ (имѧ ыпсьлон) словѣньскаѥго ѩꙁꙑка боукꙑ ѥстъ ѩꙁꙑка боукъви аꙁъбоукꙑ боук...`
108
 
109
  | Vocab | Tokens | Count |
110
  |-------|--------|-------|
111
- | 8k | `▁thumb ▁ѱ ▁( имѧ ▁ы п сь лон ) ▁словѣньскаѥго ... (+7 more)` | 17 |
112
- | 16k | `▁thumb ▁ѱ ▁( имѧ ▁ы п сь лон ) ▁словѣньскаѥго ... (+7 more)` | 17 |
113
- | 32k | `▁thumb ▁ѱ ▁( имѧ ▁ыпсьлон ) ▁словѣньскаѥго ▁ѩꙁꙑка ▁боукꙑ ▁ѥстъ ... (+4 more)` | 14 |
114
 
115
 
116
  ### Key Findings
117
 
118
- - **Best Compression:** 32k achieves 4.945x compression
119
- - **Lowest UNK Rate:** 8k with 0.1306% unknown tokens
120
  - **Trade-off:** Larger vocabularies improve compression but increase model size
121
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
122
 
@@ -133,12 +143,14 @@ Below are sample sentences tokenized with each vocabulary size:
133
 
134
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
135
  |--------|---------|------------|---------|----------------|------------------|-------------------|
136
- | **2-gram** | Word | 803 | 9.65 | 1,418 | 38.7% | 88.8% |
137
- | **2-gram** | Subword | 451 🏆 | 8.82 | 2,626 | 56.3% | 95.5% |
138
- | **3-gram** | Word | 974 | 9.93 | 1,743 | 35.2% | 82.0% |
139
- | **3-gram** | Subword | 2,632 | 11.36 | 12,321 | 25.6% | 67.4% |
140
- | **4-gram** | Word | 1,602 | 10.65 | 2,970 | 29.2% | 66.7% |
141
- | **4-gram** | Subword | 8,242 | 13.01 | 33,307 | 16.1% | 45.2% |
 
 
142
 
143
  ### Top 5 N-grams by Size
144
 
@@ -146,7 +158,7 @@ Below are sample sentences tokenized with each vocabulary size:
146
 
147
  | Rank | N-gram | Count |
148
  |------|--------|-------|
149
- | 1 | `ꙁьри такождє` | 429 |
150
  | 2 | `людии обитаѥтъ` | 260 |
151
  | 3 | `ѥстъ людии` | 234 |
152
  | 4 | `градъ ѥстъ` | 230 |
@@ -157,57 +169,77 @@ Below are sample sentences tokenized with each vocabulary size:
157
  | Rank | N-gram | Count |
158
  |------|--------|-------|
159
  | 1 | `ѥстъ людии обитаѥтъ` | 181 |
160
- | 2 | `въ дрьжавѣ бѣла` | 120 |
161
- | 3 | `дрьжавѣ бѣла роусь` | 120 |
162
  | 4 | `градъ ѥстъ людии` | 115 |
163
- | 5 | `роусь сѣи оудѣлъ` | 114 |
164
 
165
  **4-grams (Word):**
166
 
167
  | Rank | N-gram | Count |
168
  |------|--------|-------|
169
  | 1 | `въ дрьжавѣ бѣла роусь` | 120 |
170
- | 2 | `ꙁємьскъ оудѣлъ въ дрьжавѣ` | 114 |
171
  | 3 | `оудѣлъ въ дрьжавѣ бѣла` | 114 |
172
- | 4 | `дрьжавѣ бѣла роусь сѣи` | 114 |
173
- | 5 | `ѥстъ ꙁємьскъ оудѣлъ въ` | 114 |
 
 
 
 
 
 
 
 
 
 
174
 
175
  **2-grams (Subword):**
176
 
177
  | Rank | N-gram | Count |
178
  |------|--------|-------|
179
- | 1 | `ъ _` | 17,731 |
180
- | 2 | `и _` | 9,203 |
181
- | 3 | `а _` | 8,612 |
182
- | 4 | `с т` | 8,393 |
183
- | 5 | `_ с` | 6,604 |
184
 
185
  **3-grams (Subword):**
186
 
187
  | Rank | N-gram | Count |
188
  |------|--------|-------|
189
- | 1 | `т ъ _` | 5,941 |
190
- | 2 | `_ · _` | 4,423 |
191
- | 3 | `ь с к` | 3,904 |
192
- | 4 | `_ ⁙ _` | 3,096 |
193
- | 5 | `с т ъ` | 3,041 |
194
 
195
  **4-grams (Subword):**
196
 
197
  | Rank | N-gram | Count |
198
  |------|--------|-------|
199
- | 1 | `_ ѥ с т` | 2,898 |
200
- | 2 | `с т ъ _` | 2,880 |
201
- | 3 | `ѥ с т ъ` | 2,700 |
202
- | 4 | `ъ _ ⁙ _` | 1,900 |
203
- | 5 | `т ъ _ ⁙` | 1,811 |
 
 
 
 
 
 
 
 
 
 
204
 
205
 
206
  ### Key Findings
207
 
208
  - **Best Perplexity:** 2-gram (subword) with 451
209
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
210
- - **Coverage:** Top-1000 patterns cover ~45% of corpus
211
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
212
 
213
  ---
@@ -223,14 +255,14 @@ Below are sample sentences tokenized with each vocabulary size:
223
 
224
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
225
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
226
- | **1** | Word | 0.4875 | 1.402 | 2.62 | 18,795 | 51.2% |
227
- | **1** | Subword | 0.9912 | 1.988 | 7.09 | 1,078 | 0.9% |
228
- | **2** | Word | 0.1229 | 1.089 | 1.22 | 48,721 | 87.7% |
229
- | **2** | Subword | 0.8197 | 1.765 | 4.19 | 7,639 | 18.0% |
230
- | **3** | Word | 0.0442 | 1.031 | 1.07 | 58,656 | 95.6% |
231
- | **3** | Subword | 0.5526 | 1.467 | 2.43 | 31,947 | 44.7% |
232
- | **4** | Word | 0.0206 🏆 | 1.014 | 1.03 | 61,545 | 97.9% |
233
- | **4** | Subword | 0.3393 | 1.265 | 1.70 | 77,657 | 66.1% |
234
 
235
  ### Generated Text Samples (Word-based)
236
 
@@ -238,27 +270,27 @@ Below are text samples generated from each word-based Markov chain model:
238
 
239
  **Context Size 1:**
240
 
241
- 1. `и словѣньскъ ѩꙁꙑкъ ѥстъ людии обитаѥтъ стольнъ градъ ѥстъ ѥгожє потомъць тєодєнъ ꙗко идєжє kb постоꙗ...`
242
- 2. `ѥстъ додєканъ ѫглѥводородьно вєщьство алканъ рѧдоу ѥстъ ꙗко нарочито поѩтиѥ паоуло коєлио пїитъ браꙁ...`
243
- 3. `лѣта нарєчєнъ съ тꙑлоу жєнꙑ ѳєологїѩ вївлїи въ дрьжавѣ бѣла роусь сѣи оудѣлъ въ дрьжавѣ бѣла`
244
 
245
  **Context Size 2:**
246
 
247
- 1. `ꙁьри такождє владимѣръ мєждоусѣтии гради гради въ асии аꙁєрбаичаноѵ`
248
- 2. `людии обитаѥтъ масачоусєтсѣ 7 лєѡдръ обитаѥтъ таджикистана дрьжавьнъ ѩꙁꙑкъ соуми ѥстъ симъ ѩꙁꙑкомъ 9...`
249
- 3. `ѥстъ людии обитаѥтъ лѣта 788 лѣто 168 17 64 320 0 10 23 ꙁапражиѥиванофранковьска 13 9 13`
250
 
251
  **Context Size 3:**
252
 
253
- 1. `ѥстъ людии обитаѥтъ 700 тꙑсѫщь основанъ ѥстъ лѣта нарєчєнъ градъ съ лѣта гєѡргїꙗ жє мьнитъ лꙑхнꙑ ꙗко...`
254
- 2. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ...`
255
- 3. `дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣком...`
256
 
257
  **Context Size 4:**
258
 
259
- 1. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть конѣць иматъ оурѧдъ рѣкомъ ...`
260
- 2. `ѥстъ ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ градоу витьбьскъ въ ѡбласти рѣкома вит...`
261
- 3. `ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ и...`
262
 
263
 
264
  ### Generated Text Samples (Subword-based)
@@ -267,34 +299,34 @@ Below are text samples generated from each subword-based Markov chain model:
267
 
268
  **Context Size 1:**
269
 
270
- 1. `_инъ_єньсєжапь_н`
271
- 2. `а_вє_шємл҄итѣка_п`
272
- 3. _стєрїтовоуспє_`
273
 
274
  **Context Size 2:**
275
 
276
- 1. `ъ_ка_ѥстъ_бѣлꙗѥтъ`
277
- 2. `и_·_тавѣ_коѩбр҄їꙗ:`
278
- 3. `а_костомолїтарьно`
279
 
280
  **Context Size 3:**
281
 
282
- 1. `тъ_словѣньскъ_ѥстъ`
283
- 2. `_·_єпїсимь_40_грос`
284
- 3. `ьскъвьсцѣ_на_оупи_`
285
 
286
  **Context Size 4:**
287
 
288
- 1. `_ѥстъ__наи́бѫ́льша_г`
289
- 2. `стъ_гоѵглъ_єси_и_8_`
290
- 3. `ѥстъ_⁙_сѥго_ѩꙁꙑка_к`
291
 
292
 
293
  ### Key Findings
294
 
295
  - **Best Predictability:** Context-4 (word) with 97.9% predictability
296
  - **Branching Factor:** Decreases with context size (more deterministic)
297
- - **Memory Trade-off:** Larger contexts require more storage (77,657 contexts)
298
  - **Recommendation:** Context-3 or Context-4 for text generation
299
 
300
  ---
@@ -310,24 +342,24 @@ Below are text samples generated from each subword-based Markov chain model:
310
 
311
  | Metric | Value |
312
  |--------|-------|
313
- | Vocabulary Size | 6,213 |
314
- | Total Tokens | 63,034 |
315
- | Mean Frequency | 10.15 |
316
  | Median Frequency | 3 |
317
- | Frequency Std Dev | 60.04 |
318
 
319
  ### Most Common Words
320
 
321
  | Rank | Word | Frequency |
322
  |------|------|-----------|
323
- | 1 | и | 2,825 |
324
- | 2 | ѥстъ | 2,697 |
325
- | 3 | лѣта | 958 |
326
- | 4 | бѣ | 912 |
327
- | 5 | въ | 843 |
328
- | 6 | градъ | 795 |
329
- | 7 | ꙁьри | 533 |
330
- | 8 | такождє | 529 |
331
  | 9 | жє | 512 |
332
  | 10 | людии | 470 |
333
 
@@ -335,39 +367,39 @@ Below are text samples generated from each subword-based Markov chain model:
335
 
336
  | Rank | Word | Frequency |
337
  |------|------|-----------|
338
- | 1 | статистичьского | 2 |
339
- | 2 | катєгорїꙗ | 2 |
340
- | 3 | سخ | 2 |
341
- | 4 | هس | 2 |
342
- | 5 | ش | 2 |
343
- | 6 | ؤخخم | 2 |
344
- | 7 | خىث | 2 |
345
- | 8 | ىعةلاثق | 2 |
346
- | 9 | صشس | 2 |
347
- | 10 | пльсковьская | 2 |
348
 
349
  ### Zipf's Law Analysis
350
 
351
  | Metric | Value |
352
  |--------|-------|
353
- | Zipf Coefficient | 0.9368 |
354
- | R² (Goodness of Fit) | 0.986351 |
355
  | Adherence Quality | **excellent** |
356
 
357
  ### Coverage Analysis
358
 
359
  | Top N Words | Coverage |
360
  |-------------|----------|
361
- | Top 100 | 40.9% |
362
- | Top 1,000 | 72.7% |
363
  | Top 5,000 | 96.2% |
364
  | Top 10,000 | 0.0% |
365
 
366
  ### Key Findings
367
 
368
- - **Zipf Compliance:** R²=0.9864 indicates excellent adherence to Zipf's law
369
- - **High Frequency Dominance:** Top 100 words cover 40.9% of corpus
370
- - **Long Tail:** -3,787 words needed for remaining 100.0% coverage
371
 
372
  ---
373
  ## 5. Word Embeddings Evaluation
@@ -383,37 +415,40 @@ Below are text samples generated from each subword-based Markov chain model:
383
 
384
  ### 5.1 Cross-Lingual Alignment
385
 
386
- > *Note: Multilingual alignment visualization not available for this language.*
 
 
387
 
388
 
389
  ### 5.2 Model Comparison
390
 
391
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
392
  |-------|-----------|----------|------------------|---------------|----------------|
393
- | **mono_32d** | 32 | 0.2996 🏆 | 0.4830 | N/A | N/A |
394
- | **mono_64d** | 64 | 0.0761 | 0.4499 | N/A | N/A |
395
- | **mono_128d** | 128 | 0.0111 | 0.4641 | N/A | N/A |
 
 
 
396
 
397
  ### Key Findings
398
 
399
- - **Best Isotropy:** mono_32d with 0.2996 (more uniform distribution)
400
- - **Semantic Density:** Average pairwise similarity of 0.4657. Lower values indicate better semantic separation.
401
- - **Alignment Quality:** No aligned models evaluated in this run.
402
  - **Recommendation:** 128d aligned for best cross-lingual performance
403
 
404
  ---
405
  ## 6. Morphological Analysis (Experimental)
406
 
407
- > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
408
-
409
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
410
 
411
  ### 6.1 Productivity & Complexity
412
 
413
  | Metric | Value | Interpretation | Recommendation |
414
  |--------|-------|----------------|----------------|
415
- | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
416
- | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
417
 
418
  ### 6.2 Affix Inventory (Productive Units)
419
 
@@ -422,20 +457,20 @@ These are the most productive prefixes and suffixes identified by sampling the v
422
  #### Productive Prefixes
423
  | Prefix | Examples |
424
  |--------|----------|
425
- | `-пр` | правилъ, протєстантї́зма, прѣславъ |
426
- | `-по` | помꙑшлѥниѥ, послѣдни, польꙃєвати |
427
 
428
  #### Productive Suffixes
429
  | Suffix | Examples |
430
  |--------|----------|
431
- | `-ъ` | въсѣхъ, правилъ, кѷрїллъ |
432
- | `-къ` | арктїчьскъ, оучєникъ, оукъ |
433
- | `-ка` | владимѣрьска, банчьска, вльгоградьска |
434
- | `-нъ` | октадєканъ, ѥдьнѥнъ, дръжавьнъ |
435
- | `-ска` | владимѣрьска, банчьска, вльгоградьска |
436
- | `-скъ` | арктїчьскъ, лєниньскъ, въсточьнословѣньскъ |
437
- | `-кꙑ` | шавьльскꙑ, дрєвл҄ьнѥгрьчьскꙑ, аѵстрїискꙑ |
438
- | `-ьска` | владимѣрьска, банчьска, вльгоградьска |
439
 
440
  ### 6.3 Bound Stems (Lexical Roots)
441
 
@@ -443,18 +478,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
443
 
444
  | Stem | Cohesion | Substitutability | Examples |
445
  |------|----------|------------------|----------|
446
- | `боук` | 1.84x | 14 contexts | боукꙑ, боуквꙑ, боукъвъ |
447
- | `ловѣ` | 1.56x | 18 contexts | словѣ, словѣнъ, словѣнє |
448
- | `слов` | 1.69x | 14 contexts | слово, слова, словѣ |
449
- | `ьжав` | 1.70x | 13 contexts | дрьжавѫ, дрьжавꙑ, дрьжавъ |
450
- | `ньск` | 1.60x | 15 contexts | мѣньска, жєньскъ, мѣньскъ |
451
- | `ласт` | 1.40x | 20 contexts | власти, властъ, власть |
452
- | `ьска` | 1.56x | 14 contexts | омьска, людьска, мѣньска |
453
- | `овѣн` | 1.77x | 9 contexts | словѣнъ, словѣнє, словѣнїꙗ |
454
- | `град` | 1.57x | 12 contexts | градъ, градѣ, гради |
455
- | `ьскъ` | 1.55x | 11 contexts | омьскъ, жєньскъ, томьскъ |
456
- | `блас` | 1.57x | 10 contexts | ѡбласти, область, ѡбласть |
457
- | `рьжа` | 1.62x | 9 contexts | дрьжавѫ, дрьжавꙑ, дрьжавъ |
458
 
459
  ### 6.4 Affix Compatibility (Co-occurrence)
460
 
@@ -462,16 +497,16 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
462
 
463
  | Prefix | Suffix | Frequency | Examples |
464
  |--------|--------|-----------|----------|
465
- | `-пр` | `-ъ` | 34 words | приморьскъ, природьнꙑхъ |
466
- | `-по` | `-ъ` | 34 words | польꙃоуѭтъ, полѫостровъ |
467
- | `-по` | `-нъ` | 11 words | подобьнъ, поушькинъ |
468
- | `-по` | `-тъ` | 7 words | польꙃоуѭтъ, польꙃоуѥтъ |
469
- | `-по` | `-къ` | 7 words | подъбрадъкъ, пол҄ьскъ |
470
- | `-по` | `-ка` | 7 words | политика, политическа |
471
- | `-пр` | `-къ` | 6 words | приморьскъ, прѣꙁъсибирьскъ |
472
- | `-по` | `-скъ` | 6 words | пол҄ьскъ, подольскъ |
473
- | `-пр` | `-нъ` | 6 words | природьнъ, прѡтонъ |
474
- | `-по` | `-ска` | 5 words | политическа, подъкарпатьска |
475
 
476
  ### 6.5 Recursive Morpheme Segmentation
477
 
@@ -479,26 +514,28 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
479
 
480
  | Word | Suggested Split | Confidence | Stem |
481
  |------|-----------------|------------|------|
482
- | самостоꙗтѣл҄ьнъ | **`самостоꙗтѣл҄ь-нъ`** | 4.5 | `самостоꙗтѣл҄ь` |
 
 
 
 
483
  | аѵстралїиска | **`аѵстралїи-ска`** | 4.5 | `аѵстралїи` |
484
- | аѵстрїиска | **`аѵстрїи-ска`** | 4.5 | `аѵстрїи` |
485
- | франкїиска | **`франкїи-ска`** | 4.5 | `франкїи` |
486
  | аѵстрїискъ | **`аѵстрїи-скъ`** | 4.5 | `аѵстрїи` |
487
- | сибирьскъ | **`сибирь-скъ`** | 4.5 | `сибирь` |
488
- | їталїискъ | **`їталїи-скъ`** | 4.5 | `їталїи` |
489
- | ꙗпѡнїискъ | **`ꙗпѡнїи-скъ`** | 4.5 | `ꙗпѡнїи` |
490
- | ꙗпѡнїиска | **`ꙗпѡнїи-ска`** | 4.5 | `ꙗпѡнїи` |
491
- | посєлєниѥ | **`по-сєлєниѥ`** | 4.5 | `сєлєниѥ` |
492
- | посєлєниꙗ | **`по-сєлєниꙗ`** | 4.5 | `сєлєниꙗ` |
493
- | поминаѭтъ | **`по-минаѭ-тъ`** | 3.0 | `минаѭ` |
494
- | подълѣсьскъ | **`по-дълѣсь-скъ`** | 3.0 | `дълѣсь` |
495
- | єѯадєканъ | **`єѯадє-ка-нъ`** | 3.0 | `єѯадє` |
496
- | политическꙑ | **`по-литиче-скꙑ`** | 3.0 | `литиче` |
497
 
498
  ### 6.6 Linguistic Interpretation
499
 
500
  > **Automated Insight:**
501
- The language CU appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
 
 
502
 
503
  ---
504
  ## 7. Summary & Recommendations
@@ -725,4 +762,4 @@ MIT License - Free for academic and commercial use.
725
  ---
726
  *Generated by Wikilangs Models Pipeline*
727
 
728
- *Report Date: 2026-01-03 10:39:18*
 
1
  ---
2
  language: cu
3
+ language_name: Church Slavic
4
  language_family: slavic_historical
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-slavic_historical
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.940
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.2434
40
  - name: vocabulary_size
41
  type: vocab
42
  value: 0
43
  generated: 2026-01-03
44
  ---
45
 
46
+ # Church Slavic - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Church Slavic** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
  - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
 
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.877x | 3.88 | 0.1314% | 107,273 |
94
+ | **16k** | 4.367x | 4.37 | 0.1480% | 95,246 |
95
+ | **32k** | 4.940x 🏆 | 4.94 | 0.1675% | 84,200 |
96
 
97
  ### Tokenization Examples
98
 
99
  Below are sample sentences tokenized with each vocabulary size:
100
 
101
+ **Sample 1:** `Лидьскъ повѣтъ · Бѣла Роусь Лидьскъ повѣтъ · Рѡсїиска їмпєрїꙗ`
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
+ | 8k | `▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ` | 10 |
106
+ | 16k | `▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ` | 10 |
107
+ | 32k | `▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ` | 10 |
108
 
109
+ **Sample 2:** `Оꙁаскоу и · юга Санъ Паоулоу браꙁїльскъ градъ и обьщина ѥстъ ⁙ Людии 718.646 оби...`
110
 
111
  | Vocab | Tokens | Count |
112
  |-------|--------|-------|
113
+ | 8k | `▁о ꙁа скоу ▁и ▁· ▁ю га ▁санъ ▁паоу лоу ... (+24 more)` | 34 |
114
+ | 16k | `▁о ꙁа скоу ▁и ▁· ▁ю га ▁санъ ▁паоулоу ▁браꙁїл ... (+23 more)` | 33 |
115
+ | 32k | `▁оꙁаскоу ▁и ▁· ▁юга ▁санъ ▁паоулоу ▁браꙁїльскъ ▁градъ ▁и ▁обьщина ... (+19 more)` | 29 |
116
 
117
+ **Sample 3:** `Октадєканъ и инако н-октадєканъ ѫглѥводородьно вєщьство алканъ рѧдоу ѥстъ Ѥгож...`
118
 
119
  | Vocab | Tokens | Count |
120
  |-------|--------|-------|
121
+ | 8k | `▁ок тадєканъ ▁и ▁инако ▁н - ок тадєканъ ▁ѫглѥводородьно ▁вєщьство ... (+19 more)` | 29 |
122
+ | 16k | `▁октадєканъ ▁и ▁инако ▁н - ок тадєканъ ▁ѫглѥводородьно ▁вєщьство ▁алканъ ... (+17 more)` | 27 |
123
+ | 32k | `▁октадєканъ ▁и ▁инако ▁н - октадєканъ ▁ѫглѥводородьно ▁вєщьство ▁алканъ ▁рѧдоу ... (+16 more)` | 26 |
124
 
125
 
126
  ### Key Findings
127
 
128
+ - **Best Compression:** 32k achieves 4.940x compression
129
+ - **Lowest UNK Rate:** 8k with 0.1314% unknown tokens
130
  - **Trade-off:** Larger vocabularies improve compression but increase model size
131
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
132
 
 
143
 
144
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
145
  |--------|---------|------------|---------|----------------|------------------|-------------------|
146
+ | **2-gram** | Word | 802 | 9.65 | 1,417 | 38.7% | 88.9% |
147
+ | **2-gram** | Subword | 451 🏆 | 8.82 | 2,622 | 56.3% | 95.5% |
148
+ | **3-gram** | Word | 965 | 9.91 | 1,734 | 35.4% | 82.3% |
149
+ | **3-gram** | Subword | 2,629 | 11.36 | 12,286 | 25.7% | 67.4% |
150
+ | **4-gram** | Word | 1,583 | 10.63 | 2,960 | 29.4% | 67.1% |
151
+ | **4-gram** | Subword | 8,218 | 13.00 | 33,187 | 16.1% | 45.2% |
152
+ | **5-gram** | Word | 1,176 | 10.20 | 2,224 | 32.9% | 74.0% |
153
+ | **5-gram** | Subword | 14,289 | 13.80 | 46,031 | 12.7% | 35.8% |
154
 
155
  ### Top 5 N-grams by Size
156
 
 
158
 
159
  | Rank | N-gram | Count |
160
  |------|--------|-------|
161
+ | 1 | `ꙁьри такождє` | 432 |
162
  | 2 | `людии обитаѥтъ` | 260 |
163
  | 3 | `ѥстъ людии` | 234 |
164
  | 4 | `градъ ѥстъ` | 230 |
 
169
  | Rank | N-gram | Count |
170
  |------|--------|-------|
171
  | 1 | `ѥстъ людии обитаѥтъ` | 181 |
172
+ | 2 | `дрьжавѣ бѣла роусь` | 120 |
173
+ | 3 | `въ дрьжавѣ бѣла` | 120 |
174
  | 4 | `градъ ѥстъ людии` | 115 |
175
+ | 5 | `бѣла роусь сѣи` | 114 |
176
 
177
  **4-grams (Word):**
178
 
179
  | Rank | N-gram | Count |
180
  |------|--------|-------|
181
  | 1 | `въ дрьжавѣ бѣла роусь` | 120 |
182
+ | 2 | `дрьжавѣ бѣла роусь сѣи` | 114 |
183
  | 3 | `оудѣлъ въ дрьжавѣ бѣла` | 114 |
184
+ | 4 | `ꙁємьскъ оудѣлъ въ дрьжавѣ` | 114 |
185
+ | 5 | `бѣла роусь сѣи оудѣлъ` | 114 |
186
+
187
+ **5-grams (Word):**
188
+
189
+ | Rank | N-gram | Count |
190
+ |------|--------|-------|
191
+ | 1 | `роусь сѣи оудѣлъ бѣ члѣнъ` | 114 |
192
+ | 2 | `ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла` | 114 |
193
+ | 3 | `оудѣлъ въ дрьжавѣ бѣла роусь` | 114 |
194
+ | 4 | `бѣла роусь сѣи оудѣлъ бѣ` | 114 |
195
+ | 5 | `дрьжавѣ бѣла роусь сѣи оудѣлъ` | 114 |
196
 
197
  **2-grams (Subword):**
198
 
199
  | Rank | N-gram | Count |
200
  |------|--------|-------|
201
+ | 1 | `ъ _` | 17,697 |
202
+ | 2 | `и _` | 9,192 |
203
+ | 3 | `а _` | 8,589 |
204
+ | 4 | `с т` | 8,369 |
205
+ | 5 | `_ с` | 6,568 |
206
 
207
  **3-grams (Subword):**
208
 
209
  | Rank | N-gram | Count |
210
  |------|--------|-------|
211
+ | 1 | `т ъ _` | 5,939 |
212
+ | 2 | `_ · _` | 4,413 |
213
+ | 3 | `ь с к` | 3,883 |
214
+ | 4 | `_ ⁙ _` | 3,094 |
215
+ | 5 | `с т ъ` | 3,038 |
216
 
217
  **4-grams (Subword):**
218
 
219
  | Rank | N-gram | Count |
220
  |------|--------|-------|
221
+ | 1 | `_ ѥ с т` | 2,895 |
222
+ | 2 | `с т ъ _` | 2,876 |
223
+ | 3 | `ѥ с т ъ` | 2,698 |
224
+ | 4 | `ъ _ ⁙ _` | 1,902 |
225
+ | 5 | `т ъ _ ⁙` | 1,813 |
226
+
227
+ **5-grams (Subword):**
228
+
229
+ | Rank | N-gram | Count |
230
+ |------|--------|-------|
231
+ | 1 | `_ ѥ с т ъ` | 2,695 |
232
+ | 2 | `ѥ с т ъ _` | 2,559 |
233
+ | 3 | `т ъ _ ⁙ _` | 1,796 |
234
+ | 4 | `_ г р а д` | 1,425 |
235
+ | 5 | `с т ъ _ ⁙` | 1,340 |
236
 
237
 
238
  ### Key Findings
239
 
240
  - **Best Perplexity:** 2-gram (subword) with 451
241
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
242
+ - **Coverage:** Top-1000 patterns cover ~36% of corpus
243
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
244
 
245
  ---
 
255
 
256
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
257
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
258
+ | **1** | Word | 0.4863 | 1.401 | 2.62 | 18,746 | 51.4% |
259
+ | **1** | Subword | 0.9940 | 1.992 | 7.09 | 1,077 | 0.6% |
260
+ | **2** | Word | 0.1229 | 1.089 | 1.22 | 48,473 | 87.7% |
261
+ | **2** | Subword | 0.8201 | 1.766 | 4.18 | 7,633 | 18.0% |
262
+ | **3** | Word | 0.0444 | 1.031 | 1.07 | 58,365 | 95.6% |
263
+ | **3** | Subword | 0.5514 | 1.466 | 2.43 | 31,900 | 44.9% |
264
+ | **4** | Word | 0.0207 🏆 | 1.014 | 1.03 | 61,255 | 97.9% |
265
+ | **4** | Subword | 0.3387 | 1.265 | 1.70 | 77,420 | 66.1% |
266
 
267
  ### Generated Text Samples (Word-based)
268
 
 
270
 
271
  **Context Size 1:**
272
 
273
+ 1. `и ꙁападьнꙑ дъвинꙑ роуси пьсаниꙗ алєѯандра данїиловища свѣтьлѣиша кънѧꙃа владєнию бѣ съ словѣньскомь ...`
274
+ 2. `ѥстъ стольнъ градъ ѥстъ нѣмьцкомь єпископомь албєртомь а нꙑнѣ жє носьнꙑи приꙁвѫкъ нє ꙁнаашє ѥдьнъ ис`
275
+ 3. `лѣта їмпєратѡръ ѥстъ пєроунъ сварогъ ѩꙁꙑчьство`
276
 
277
  **Context Size 2:**
278
 
279
+ 1. `ꙁьри такождє обитѣльско напьсаниѥ владиславъ їѡаннъ асєн҄ь а҃ и блъгарїꙗ цѣсарь бѣ їѡанна асєнꙗ а҃ с...`
280
+ 2. `людии обитаѥтъ 6 9 лєѡ́дръ їсторїꙗ лѣта по нѣмьць ѥдьнѥниꙗ бєрлинъ пакꙑ сталъ ѥстъ ꙁьри такъждє брюѯ...`
281
+ 3. `ѥстъ людии 2 лєѡдръ обитаѥтъ пакистана дрьжавьнъ ѩꙁꙑкъ тѷрчьскъ ѥстъ їсторїꙗ дѣлꙗ охранꙑ съдравиꙗ лѣ...`
282
 
283
  **Context Size 3:**
284
 
285
+ 1. `ѥстъ людии обитаѥтъ 398 и иꙁъ ихъжє мѫжь 175 и жєнъ 223 наибол҄ии числомь народъ роусьсци ѥстъ 99`
286
+ 2. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома могилєвьска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣ...`
287
+ 3. `дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ градоу витьбьскъ въ ѡбласти рѣкома мѣньска ѡбласть повѣтъ има...`
288
 
289
  **Context Size 4:**
290
 
291
+ 1. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣ...`
292
+ 2. `роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ сєльскъ съвѣтъ ...`
293
+ 3. `бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома витєбьска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ сєльскъ ...`
294
 
295
 
296
  ### Generated Text Samples (Subword-based)
 
299
 
300
  **Context Size 1:**
301
 
302
+ 1. `_иното_ѥгонокꙑ_ѥ`
303
+ 2. `а_одаскꙑ_сточлѣс`
304
+ 3. `орлѩꙁа_гокє_ꙁꙑ_с`
305
 
306
  **Context Size 2:**
307
 
308
+ 1. `ъ_обирѡсьскꙑ_рѣвь`
309
+ 2. `и_•_всєли_·_рѡпьс`
310
+ 3. `а_посладъпрꙗѥтъ_ꙁ`
311
 
312
  **Context Size 3:**
313
 
314
+ 1. `тъ__глаголєптємпє`
315
+ 2. `_·_дѣлъ_бѣлороусло`
316
+ 3. `ьскъ_прьвовец_гора`
317
 
318
  **Context Size 4:**
319
 
320
+ 1. `_ѥстъ_·_мїхаилъ_хоу`
321
+ 2. `стъ_словєниꙗ_мѫжь_с`
322
+ 3. `ѥстъ_⁙_глагоданьска`
323
 
324
 
325
  ### Key Findings
326
 
327
  - **Best Predictability:** Context-4 (word) with 97.9% predictability
328
  - **Branching Factor:** Decreases with context size (more deterministic)
329
+ - **Memory Trade-off:** Larger contexts require more storage (77,420 contexts)
330
  - **Recommendation:** Context-3 or Context-4 for text generation
331
 
332
  ---
 
342
 
343
  | Metric | Value |
344
  |--------|-------|
345
+ | Vocabulary Size | 6,189 |
346
+ | Total Tokens | 62,865 |
347
+ | Mean Frequency | 10.16 |
348
  | Median Frequency | 3 |
349
+ | Frequency Std Dev | 60.08 |
350
 
351
  ### Most Common Words
352
 
353
  | Rank | Word | Frequency |
354
  |------|------|-----------|
355
+ | 1 | и | 2,821 |
356
+ | 2 | ѥстъ | 2,694 |
357
+ | 3 | лѣта | 952 |
358
+ | 4 | бѣ | 910 |
359
+ | 5 | въ | 842 |
360
+ | 6 | градъ | 792 |
361
+ | 7 | ꙁьри | 536 |
362
+ | 8 | такождє | 533 |
363
  | 9 | жє | 512 |
364
  | 10 | людии | 470 |
365
 
 
367
 
368
  | Rank | Word | Frequency |
369
  |------|------|-----------|
370
+ | 1 | катєгорїꙗ | 2 |
371
+ | 2 | سخ | 2 |
372
+ | 3 | هس | 2 |
373
+ | 4 | ش | 2 |
374
+ | 5 | ؤخخم | 2 |
375
+ | 6 | خىث | 2 |
376
+ | 7 | ىعةلاثق | 2 |
377
+ | 8 | صشس | 2 |
378
+ | 9 | пльсковьская | 2 |
379
+ | 10 | маѭтъ | 2 |
380
 
381
  ### Zipf's Law Analysis
382
 
383
  | Metric | Value |
384
  |--------|-------|
385
+ | Zipf Coefficient | 0.9373 |
386
+ | R² (Goodness of Fit) | 0.986343 |
387
  | Adherence Quality | **excellent** |
388
 
389
  ### Coverage Analysis
390
 
391
  | Top N Words | Coverage |
392
  |-------------|----------|
393
+ | Top 100 | 41.0% |
394
+ | Top 1,000 | 72.8% |
395
  | Top 5,000 | 96.2% |
396
  | Top 10,000 | 0.0% |
397
 
398
  ### Key Findings
399
 
400
+ - **Zipf Compliance:** R²=0.9863 indicates excellent adherence to Zipf's law
401
+ - **High Frequency Dominance:** Top 100 words cover 41.0% of corpus
402
+ - **Long Tail:** -3,811 words needed for remaining 100.0% coverage
403
 
404
  ---
405
  ## 5. Word Embeddings Evaluation
 
415
 
416
  ### 5.1 Cross-Lingual Alignment
417
 
418
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
419
+
420
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
421
 
422
 
423
  ### 5.2 Model Comparison
424
 
425
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
426
  |-------|-----------|----------|------------------|---------------|----------------|
427
+ | **mono_32d** | 32 | 0.2434 | 0.4441 | N/A | N/A |
428
+ | **mono_64d** | 64 | 0.0769 | 0.4495 | N/A | N/A |
429
+ | **mono_128d** | 128 | 0.0128 | 0.4700 | N/A | N/A |
430
+ | **aligned_32d** | 32 | 0.2434 🏆 | 0.4485 | 0.0177 | 0.1032 |
431
+ | **aligned_64d** | 64 | 0.0769 | 0.4699 | 0.0324 | 0.1475 |
432
+ | **aligned_128d** | 128 | 0.0128 | 0.4554 | 0.0442 | 0.1357 |
433
 
434
  ### Key Findings
435
 
436
+ - **Best Isotropy:** aligned_32d with 0.2434 (more uniform distribution)
437
+ - **Semantic Density:** Average pairwise similarity of 0.4562. Lower values indicate better semantic separation.
438
+ - **Alignment Quality:** Aligned models achieve up to 4.4% R@1 in cross-lingual retrieval.
439
  - **Recommendation:** 128d aligned for best cross-lingual performance
440
 
441
  ---
442
  ## 6. Morphological Analysis (Experimental)
443
 
 
 
444
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
445
 
446
  ### 6.1 Productivity & Complexity
447
 
448
  | Metric | Value | Interpretation | Recommendation |
449
  |--------|-------|----------------|----------------|
450
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
451
+ | Idiomaticity Gap | **1.066** | High formulaic/idiomatic content | - |
452
 
453
  ### 6.2 Affix Inventory (Productive Units)
454
 
 
457
  #### Productive Prefixes
458
  | Prefix | Examples |
459
  |--------|----------|
460
+ | `-по` | поѩла, погꙑнѫли, польꙃєвати |
461
+ | `-пр` | прєждє, придънѣстрии, прасловѣньскъ |
462
 
463
  #### Productive Suffixes
464
  | Suffix | Examples |
465
  |--------|----------|
466
+ | `-ъ` | въꙁвращєнъ, дѣлъ, ѳєр��пѡнтъ |
467
+ | `-къ` | липьтьскъ, грьчьскъ, словѣньскъ |
468
+ | `-нъ` | въꙁвращєнъ, гла́вьнъ, съꙁиждєнъ |
469
+ | `-ка` | кировьска, фроунꙁєньска, видодъска |
470
+ | `-скъ` | липьтьскъ, грьчьскъ, словѣньскъ |
471
+ | `-ска` | кировьска, фроунꙁєньска, видодъска |
472
+ | `-ьска` | кировьска, фроунꙁєньска, городєньска |
473
+ | `-кꙑ` | блъгарьскꙑ, хръватьскꙑ, словѣньскꙑ |
474
 
475
  ### 6.3 Bound Stems (Lexical Roots)
476
 
 
478
 
479
  | Stem | Cohesion | Substitutability | Examples |
480
  |------|----------|------------------|----------|
481
+ | `боук` | 1.89x | 14 contexts | боукꙑ, боуквꙑ, боукъвь |
482
+ | `ловѣ` | 1.63x | 18 contexts | словѣ, чловѣкъ, словѣнє |
483
+ | `слов` | 1.77x | 14 contexts | слово, словѣ, слова |
484
+ | `ласт` | 1.55x | 20 contexts | властъ, власть, власти |
485
+ | `ьжав` | 1.75x | 13 contexts | дрьжавꙑ, дрьжавъ, дрьжавѫ |
486
+ | `ньск` | 1.65x | 15 contexts | мѣньска, мѣньскъ, жєньскъ |
487
+ | `ьска` | 1.64x | 14 contexts | омьска, єстьска, сѣрьска |
488
+ | `овѣн` | 1.83x | 10 contexts | словѣнє, словѣнъ, словѣнїꙗ |
489
+ | `град` | 1.63x | 13 contexts | градѣ, градъ, гради |
490
+ | `блас` | 1.69x | 10 contexts | ѡбласти, области, ѡбласть |
491
+ | `ьскъ` | 1.63x | 11 contexts | омьскъ, римьскъ, ꙁємьскъ |
492
+ | `рьжа` | 1.69x | 9 contexts | дрьжавꙑ, дрьжавъ, дрьжавѫ |
493
 
494
  ### 6.4 Affix Compatibility (Co-occurrence)
495
 
 
497
 
498
  | Prefix | Suffix | Frequency | Examples |
499
  |--------|--------|-----------|----------|
500
+ | `-по` | `-ъ` | 34 words | побѣдъ, помѣновєнъ |
501
+ | `-пр` | `-ъ` | 34 words | прьвꙑимъ, проливъ |
502
+ | `-по` | `-нъ` | 11 words | помѣновєнъ, посъланъ |
503
+ | `-по` | `-ка` | 7 words | подъкарпатьска, по́л̑ьска |
504
+ | `-по` | `-къ` | 7 words | подъбрадъкъ, подълѣсьскъ |
505
+ | `-по` | `-скъ` | 6 words | подълѣсьскъ, пол҄ьскъ |
506
+ | `-пр` | `-нъ` | 6 words | прѣданъ, природьнъ |
507
+ | `-пр` | `-къ` | 6 words | приморьскъ, прьвотравєньскъ |
508
+ | `-по` | `-ска` | 5 words | подъкарпатьска, по́л̑ьска |
509
+ | `-по` | `-ьскъ` | 5 words | подълѣсьскъ, пол҄ьскъ |
510
 
511
  ### 6.5 Recursive Morpheme Segmentation
512
 
 
514
 
515
  | Word | Suggested Split | Confidence | Stem |
516
  |------|-----------------|------------|------|
517
+ | гєѡргїиска | **`гєѡргїи-ска`** | 4.5 | `гєѡргїи` |
518
+ | посєлѥниѥ | **`по-��єлѥниѥ`** | 4.5 | `сєлѥниѥ` |
519
+ | октѡврїиска | **`октѡврїи-ска`** | 4.5 | `октѡврїи` |
520
+ | посєлѥниꙗ | **`по-сєлѥниꙗ`** | 4.5 | `сєлѥниꙗ` |
521
+ | самостоꙗтєл҄ьна | **`самостоꙗтєл҄ь-на`** | 4.5 | `самостоꙗтєл҄ь` |
522
  | аѵстралїиска | **`аѵстралїи-ска`** | 4.5 | `аѵстралїи` |
523
+ | самостоꙗтѣльна | **`самостоꙗтѣль-на`** | 4.5 | `самостоꙗтѣль` |
 
524
  | аѵстрїискъ | **`аѵстрїи-скъ`** | 4.5 | `аѵстрїи` |
525
+ | приморьскъ | **`пр-имор-ьскъ`** | 3.0 | `имор` |
526
+ | подольскъ | **`по-доль-скъ`** | 3.0 | `доль` |
527
+ | полїтїчьскъ | **`по-лїтїч-ьскъ`** | 3.0 | `лїтїч` |
528
+ | подъꙁємьнъ | **`по-дъꙁємь-нъ`** | 3.0 | `дъꙁємь` |
529
+ | прѣѥмьникъ | **`пр-ѣѥмьни-къ`** | 3.0 | `ѣѥмьни` |
530
+ | потрѣбьна | **`по-трѣбь-на`** | 3.0 | `трѣбь` |
531
+ | политическа | **`по-литиче-ска`** | 3.0 | `литиче` |
 
 
 
532
 
533
  ### 6.6 Linguistic Interpretation
534
 
535
  > **Automated Insight:**
536
+ The language Church Slavic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
537
+
538
+ > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
539
 
540
  ---
541
  ## 7. Summary & Recommendations
 
762
  ---
763
  *Generated by Wikilangs Models Pipeline*
764
 
765
+ *Report Date: 2026-01-03 20:59:44*
models/embeddings/aligned/cu_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70955bffb6c7be3d460ab37ab99c40c6e50f57e778afffe5c66463f7d02f4c98
3
+ size 1026168646
models/embeddings/aligned/cu_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "cu", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/cu_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cdfcacbc535058b28d6a343f802b99aa2ba19ed5e169a8e800c130504bad0ec
3
+ size 65664
models/embeddings/aligned/cu_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "cu",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 339,
7
+ "vocab_size": 2074
8
+ }
models/embeddings/aligned/cu_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ead4a44192bbe83de7d9b363ee83835a8dd73ba2f06a04090d4261e7ffee25bf
3
+ size 256575814
models/embeddings/aligned/cu_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "cu", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/cu_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:885bc7e6b0aba665ab4416a5b9261448be3aed77e6e445dd8d129854b8f6173a
3
+ size 4224
models/embeddings/aligned/cu_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "cu",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 339,
7
+ "vocab_size": 2074
8
+ }
models/embeddings/aligned/cu_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dde8a72af6e55db50167090622b22b1b791150967af8dcd91220c45f18147de
3
+ size 513106758
models/embeddings/aligned/cu_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "cu", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/cu_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f4625de4927eb6c16995c71459ef48aa6fedc42f2ee6b5c236ace594e84724
3
+ size 16512
models/embeddings/aligned/cu_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "cu",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 339,
7
+ "vocab_size": 2074
8
+ }
models/embeddings/monolingual/cu_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f180195153a0e4578f44c1f6b1c3eda4c3a7f0672314c1b3ce6aebed01755be
3
- size 1026177089
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70955bffb6c7be3d460ab37ab99c40c6e50f57e778afffe5c66463f7d02f4c98
3
+ size 1026168646
models/embeddings/monolingual/cu_128d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
- "vocab_size": 2082
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
+ "vocab_size": 2074
15
  }
models/embeddings/monolingual/cu_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f90429875eb75105fa8f12361ebaf97112dbdb9c2a3a585b6a0f5093c23fa4a9
3
- size 256578113
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ead4a44192bbe83de7d9b363ee83835a8dd73ba2f06a04090d4261e7ffee25bf
3
+ size 256575814
models/embeddings/monolingual/cu_32d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
- "vocab_size": 2082
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
+ "vocab_size": 2074
15
  }
models/embeddings/monolingual/cu_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:13f1bd4d35a86f2cf0d70eb7c8c834bc4615d38220adae9405e7fddc748a894a
3
- size 513111105
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dde8a72af6e55db50167090622b22b1b791150967af8dcd91220c45f18147de
3
+ size 513106758
models/embeddings/monolingual/cu_64d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
- "vocab_size": 2082
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
+ "vocab_size": 2074
15
  }
models/subword_markov/cu_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4e949a197cc604e7c761bd6bc85ce653be6b8e3a354f4cd10bcb179122c7c1bc
3
- size 61462
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce1edbc4ff3d89a5297689a621049645e7677368c7fb9b48728cbb25ec12c6c9
3
+ size 58311
models/subword_markov/cu_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_contexts": 1078,
6
- "total_transitions": 515604
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_contexts": 1077,
6
+ "total_transitions": 514006
7
  }
models/subword_markov/cu_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b941955b7b2c0d840400a334ec728d235f18de03f0b7d327b53a4c3fc2b0affd
3
- size 241073
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5afdfa50dfee4f62d0879905cf4838a1b3d40c81ab9b41b63d6ea6cd457392a8
3
+ size 239107
models/subword_markov/cu_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_contexts": 7639,
6
- "total_transitions": 514286
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_contexts": 7633,
6
+ "total_transitions": 512684
7
  }
models/subword_markov/cu_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f131478e09b8f63ad301796670764859e6dfa836f6b9d6ca0311e6ee4f91d06c
3
- size 678460
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f1b1cf9de0b5de2daac2e64cce22d8d3bad88762ccaa9bb48cf47e57035ac3
3
+ size 672469
models/subword_markov/cu_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_contexts": 31947,
6
- "total_transitions": 512968
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_contexts": 31900,
6
+ "total_transitions": 511362
7
  }
models/subword_markov/cu_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:56b15f422fd056498e6c88d7059108ebf1372e799ff8caeeefcadf86d5c18d69
3
- size 1344662
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa58cd0ccf4b588c6e592483927a99e9989ca8ccc80a23375416ca43d4c3e14b
3
+ size 1340422
models/subword_markov/cu_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_contexts": 77657,
6
- "total_transitions": 511650
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_contexts": 77420,
6
+ "total_transitions": 510040
7
  }
models/subword_ngram/cu_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2126e3213739aec87a6da0c10a5370c2aa9b1ac282cc16a13ff6bb7203679f6e
3
- size 33800
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:933a47acb9a1fe04cf5f8c339161bfde593aa2fd5b818de54fb7999685005a82
3
+ size 33490
models/subword_ngram/cu_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_ngrams": 2626,
6
- "total_ngrams": 515604
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_ngrams": 2622,
6
+ "total_ngrams": 514006
7
  }
models/subword_ngram/cu_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b2cc8ff85bcc54e2024c90771fec3887648656c77e0464212ec94ebfeea2edc3
3
- size 160670
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13bdd3020e3be644849cb639166b11a14f0d83c1282fab06e46198408ad6d103
3
+ size 160334
models/subword_ngram/cu_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_ngrams": 12321,
6
- "total_ngrams": 514286
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_ngrams": 12286,
6
+ "total_ngrams": 512684
7
  }
models/subword_ngram/cu_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e5f7ca57181d7dc4617a367f4ab643220e33820321439ffab3d419cf589a2a4
3
- size 464092
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46deafa006f2e1ae5c400359ae38e82643726ec70519c36b25a393d843cc864f
3
+ size 454137
models/subword_ngram/cu_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "cu",
5
- "unique_ngrams": 33307,
6
- "total_ngrams": 512968
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "cu",
5
+ "unique_ngrams": 33187,
6
+ "total_ngrams": 511362
7
  }
models/subword_ngram/cu_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e47b0a6dacdf5ec7fb74ed8a879e7c717639ec579260d92137c1833b2adc5b99
3
+ size 647025
models/subword_ngram/cu_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "cu",
5
+ "unique_ngrams": 46031,
6
+ "total_ngrams": 510040
7
+ }
models/tokenizer/cu_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:97e6359a0f9b3b36740eb66281c9d74b4750ea93b6ae84d5b6666d1d0cb350c4
3
- size 574583
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54fcb6b0322245c2814ee47ec98d61ba57fb6cf34a9a04b1300e24ef4e09195a
3
+ size 574629
models/tokenizer/cu_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/cu_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:64b3f6f09166812fbbb56c670818df981292963a9f019e1f0adfac21a18679da
3
- size 960296
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bb8f76ddc298d8534b123428e82c239b77c35db3f1c65d128555ffda988a2bf
3
+ size 960739
models/tokenizer/cu_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/cu_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:acc38a0fece8f1fa677a20fabe3d2d86630c9a3df52c07ec34dbad75382cb37a
3
- size 398366
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbc737e0003034cedb55b6f7127462b442f563eace2f98a46b5dfee83b21875f
3
+ size 398308
models/tokenizer/cu_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/cu_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:430483667c6dfc4d8c34b266ab0e2f51a877989023eebb849030861107cfd909
3
- size 111841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6f3631f2d06984dc24e1e85fd9b488bc9622b27e62320507f6303dd21c6b88c
3
+ size 110897
models/vocabulary/cu_vocabulary_metadata.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "language": "cu",
3
- "vocabulary_size": 6213,
4
  "variant": "full",
5
  "statistics": {
6
- "type_token_ratio": 0.24926341379629263,
7
  "coverage": {
8
- "top_100": 0.34099647231360736,
9
- "top_1000": 0.6052426440471944,
10
- "top_5000": 0.8007715988214621,
11
- "top_10000": 0.8828596720705009
12
  },
13
- "hapax_count": 12653,
14
- "hapax_ratio": 0.6706774090957278,
15
- "total_documents": 1318
16
  }
17
  }
 
1
  {
2
  "language": "cu",
3
+ "vocabulary_size": 6189,
4
  "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.24925489780509452,
7
  "coverage": {
8
+ "top_100": 0.3413164134423059,
9
+ "top_1000": 0.6060164518564635,
10
+ "top_5000": 0.80122660379108,
11
+ "top_10000": 0.8832077146225478
12
  },
13
+ "hapax_count": 12628,
14
+ "hapax_ratio": 0.6710952861773928,
15
+ "total_documents": 1322
16
  }
17
  }
models/word_markov/cu_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa5618d23ca23ed6f616602577c65e3e186ba372648b13a91d6915bcb3a1bca1
3
- size 679909
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e158acd99119e6c0a3a722c0a7569dd852b3557e8bbb1bccab6a895c47250485
3
+ size 677558
models/word_markov/cu_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "cu",
5
- "unique_contexts": 18795,
6
- "total_transitions": 74369
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "cu",
5
+ "unique_contexts": 18746,
6
+ "total_transitions": 74171
7
  }
models/word_markov/cu_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e53c547cb424d7129f42e0810a4886b3e115522fb5db795757ffaeff957e9df6
3
- size 1303006
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9ab422ae98a7adcbf1a54254ea783e82761b073b30443fa4e0ca363abbf17ea
3
+ size 1299365
models/word_markov/cu_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "cu",
5
- "unique_contexts": 48721,
6
- "total_transitions": 73051
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "cu",
5
+ "unique_contexts": 48473,
6
+ "total_transitions": 72849
7
  }
models/word_markov/cu_markov_ctx3_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e1c4cf8e3dc9462e981f1ecec515a2d1249d9723320718db76503ee3b51ce571
3
- size 1658703
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14683206db82be572903e01bee66092772026bb58cc5a9818fb9ae0ba5b1059
3
+ size 1649938
models/word_markov/cu_markov_ctx3_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "cu",
5
- "unique_contexts": 58656,
6
- "total_transitions": 71733
7
  }
 
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "cu",
5
+ "unique_contexts": 58365,
6
+ "total_transitions": 71527
7
  }