Upload all models and assets for cu (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +210 -173
- models/embeddings/aligned/cu_128d.bin +3 -0
- models/embeddings/aligned/cu_128d.meta.json +1 -0
- models/embeddings/aligned/cu_128d.projection.npy +3 -0
- models/embeddings/aligned/cu_128d_metadata.json +8 -0
- models/embeddings/aligned/cu_32d.bin +3 -0
- models/embeddings/aligned/cu_32d.meta.json +1 -0
- models/embeddings/aligned/cu_32d.projection.npy +3 -0
- models/embeddings/aligned/cu_32d_metadata.json +8 -0
- models/embeddings/aligned/cu_64d.bin +3 -0
- models/embeddings/aligned/cu_64d.meta.json +1 -0
- models/embeddings/aligned/cu_64d.projection.npy +3 -0
- models/embeddings/aligned/cu_64d_metadata.json +8 -0
- models/embeddings/monolingual/cu_128d.bin +2 -2
- models/embeddings/monolingual/cu_128d_metadata.json +1 -1
- models/embeddings/monolingual/cu_32d.bin +2 -2
- models/embeddings/monolingual/cu_32d_metadata.json +1 -1
- models/embeddings/monolingual/cu_64d.bin +2 -2
- models/embeddings/monolingual/cu_64d_metadata.json +1 -1
- models/subword_markov/cu_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/cu_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/cu_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/cu_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/cu_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/cu_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/cu_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/cu_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/cu_2gram_subword.parquet +2 -2
- models/subword_ngram/cu_2gram_subword_metadata.json +2 -2
- models/subword_ngram/cu_3gram_subword.parquet +2 -2
- models/subword_ngram/cu_3gram_subword_metadata.json +2 -2
- models/subword_ngram/cu_4gram_subword.parquet +2 -2
- models/subword_ngram/cu_4gram_subword_metadata.json +2 -2
- models/subword_ngram/cu_5gram_subword.parquet +3 -0
- models/subword_ngram/cu_5gram_subword_metadata.json +7 -0
- models/tokenizer/cu_tokenizer_16k.model +2 -2
- models/tokenizer/cu_tokenizer_16k.vocab +0 -0
- models/tokenizer/cu_tokenizer_32k.model +2 -2
- models/tokenizer/cu_tokenizer_32k.vocab +0 -0
- models/tokenizer/cu_tokenizer_8k.model +2 -2
- models/tokenizer/cu_tokenizer_8k.vocab +0 -0
- models/vocabulary/cu_vocabulary.parquet +2 -2
- models/vocabulary/cu_vocabulary_metadata.json +9 -9
- models/word_markov/cu_markov_ctx1_word.parquet +2 -2
- models/word_markov/cu_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/cu_markov_ctx2_word.parquet +2 -2
- models/word_markov/cu_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/cu_markov_ctx3_word.parquet +2 -2
- models/word_markov/cu_markov_ctx3_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: cu
|
| 3 |
-
language_name:
|
| 4 |
language_family: slavic_historical
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-slavic_historical
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,43 +90,43 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 4.
|
| 85 |
-
| **32k** | 4.
|
| 86 |
|
| 87 |
### Tokenization Examples
|
| 88 |
|
| 89 |
Below are sample sentences tokenized with each vocabulary size:
|
| 90 |
|
| 91 |
-
**Sample 1:**
|
| 92 |
|
| 93 |
| Vocab | Tokens | Count |
|
| 94 |
|-------|--------|-------|
|
| 95 |
-
| 8k |
|
| 96 |
-
| 16k |
|
| 97 |
-
| 32k |
|
| 98 |
|
| 99 |
-
**Sample 2:**
|
| 100 |
|
| 101 |
| Vocab | Tokens | Count |
|
| 102 |
|-------|--------|-------|
|
| 103 |
-
| 8k |
|
| 104 |
-
| 16k |
|
| 105 |
-
| 32k |
|
| 106 |
|
| 107 |
-
**Sample 3:**
|
| 108 |
|
| 109 |
| Vocab | Tokens | Count |
|
| 110 |
|-------|--------|-------|
|
| 111 |
-
| 8k |
|
| 112 |
-
| 16k |
|
| 113 |
-
| 32k |
|
| 114 |
|
| 115 |
|
| 116 |
### Key Findings
|
| 117 |
|
| 118 |
-
- **Best Compression:** 32k achieves 4.
|
| 119 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 120 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 121 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 122 |
|
|
@@ -133,12 +143,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 133 |
|
| 134 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 135 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 136 |
-
| **2-gram** | Word |
|
| 137 |
-
| **2-gram** | Subword | 451 🏆 | 8.82 | 2,
|
| 138 |
-
| **3-gram** | Word |
|
| 139 |
-
| **3-gram** | Subword | 2,
|
| 140 |
-
| **4-gram** | Word | 1,
|
| 141 |
-
| **4-gram** | Subword | 8,
|
|
|
|
|
|
|
| 142 |
|
| 143 |
### Top 5 N-grams by Size
|
| 144 |
|
|
@@ -146,7 +158,7 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 146 |
|
| 147 |
| Rank | N-gram | Count |
|
| 148 |
|------|--------|-------|
|
| 149 |
-
| 1 | `ꙁьри такождє` |
|
| 150 |
| 2 | `людии обитаѥтъ` | 260 |
|
| 151 |
| 3 | `ѥстъ людии` | 234 |
|
| 152 |
| 4 | `градъ ѥстъ` | 230 |
|
|
@@ -157,57 +169,77 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 157 |
| Rank | N-gram | Count |
|
| 158 |
|------|--------|-------|
|
| 159 |
| 1 | `ѥстъ людии обитаѥтъ` | 181 |
|
| 160 |
-
| 2 |
|
| 161 |
-
| 3 |
|
| 162 |
| 4 | `градъ ѥстъ людии` | 115 |
|
| 163 |
-
| 5 |
|
| 164 |
|
| 165 |
**4-grams (Word):**
|
| 166 |
|
| 167 |
| Rank | N-gram | Count |
|
| 168 |
|------|--------|-------|
|
| 169 |
| 1 | `въ дрьжавѣ бѣла роусь` | 120 |
|
| 170 |
-
| 2 |
|
| 171 |
| 3 | `оудѣлъ въ дрьжавѣ бѣла` | 114 |
|
| 172 |
-
| 4 |
|
| 173 |
-
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
**2-grams (Subword):**
|
| 176 |
|
| 177 |
| Rank | N-gram | Count |
|
| 178 |
|------|--------|-------|
|
| 179 |
-
| 1 | `ъ _` | 17,
|
| 180 |
-
| 2 | `и _` | 9,
|
| 181 |
-
| 3 | `а _` | 8,
|
| 182 |
-
| 4 | `с т` | 8,
|
| 183 |
-
| 5 | `_ с` | 6,
|
| 184 |
|
| 185 |
**3-grams (Subword):**
|
| 186 |
|
| 187 |
| Rank | N-gram | Count |
|
| 188 |
|------|--------|-------|
|
| 189 |
-
| 1 | `т ъ _` | 5,
|
| 190 |
-
| 2 | `_ · _` | 4,
|
| 191 |
-
| 3 | `ь с к` | 3,
|
| 192 |
-
| 4 | `_ ⁙ _` | 3,
|
| 193 |
-
| 5 | `с т ъ` | 3,
|
| 194 |
|
| 195 |
**4-grams (Subword):**
|
| 196 |
|
| 197 |
| Rank | N-gram | Count |
|
| 198 |
|------|--------|-------|
|
| 199 |
-
| 1 | `_ ѥ с т` | 2,
|
| 200 |
-
| 2 | `с т ъ _` | 2,
|
| 201 |
-
| 3 | `ѥ с т ъ` | 2,
|
| 202 |
-
| 4 | `ъ _ ⁙ _` | 1,
|
| 203 |
-
| 5 | `т ъ _ ⁙` | 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
|
| 206 |
### Key Findings
|
| 207 |
|
| 208 |
- **Best Perplexity:** 2-gram (subword) with 451
|
| 209 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 210 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 211 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 212 |
|
| 213 |
---
|
|
@@ -223,14 +255,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 223 |
|
| 224 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 225 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 226 |
-
| **1** | Word | 0.
|
| 227 |
-
| **1** | Subword | 0.
|
| 228 |
-
| **2** | Word | 0.1229 | 1.089 | 1.22 | 48,
|
| 229 |
-
| **2** | Subword | 0.
|
| 230 |
-
| **3** | Word | 0.
|
| 231 |
-
| **3** | Subword | 0.
|
| 232 |
-
| **4** | Word | 0.
|
| 233 |
-
| **4** | Subword | 0.
|
| 234 |
|
| 235 |
### Generated Text Samples (Word-based)
|
| 236 |
|
|
@@ -238,27 +270,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 238 |
|
| 239 |
**Context Size 1:**
|
| 240 |
|
| 241 |
-
1. `и
|
| 242 |
-
2. `ѥстъ
|
| 243 |
-
3. `лѣта
|
| 244 |
|
| 245 |
**Context Size 2:**
|
| 246 |
|
| 247 |
-
1. `ꙁьри такождє
|
| 248 |
-
2. `людии обитаѥтъ
|
| 249 |
-
3. `ѥстъ людии
|
| 250 |
|
| 251 |
**Context Size 3:**
|
| 252 |
|
| 253 |
-
1. `ѥстъ людии обитаѥтъ
|
| 254 |
-
2. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома
|
| 255 |
-
3. `дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома
|
| 256 |
|
| 257 |
**Context Size 4:**
|
| 258 |
|
| 259 |
-
1. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома
|
| 260 |
-
2.
|
| 261 |
-
3.
|
| 262 |
|
| 263 |
|
| 264 |
### Generated Text Samples (Subword-based)
|
|
@@ -267,34 +299,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 267 |
|
| 268 |
**Context Size 1:**
|
| 269 |
|
| 270 |
-
1. `_
|
| 271 |
-
2. `а_
|
| 272 |
-
3.
|
| 273 |
|
| 274 |
**Context Size 2:**
|
| 275 |
|
| 276 |
-
1. `ъ_
|
| 277 |
-
2. `и_·_
|
| 278 |
-
3. `а_
|
| 279 |
|
| 280 |
**Context Size 3:**
|
| 281 |
|
| 282 |
-
1. `тъ_
|
| 283 |
-
2. `_·_
|
| 284 |
-
3.
|
| 285 |
|
| 286 |
**Context Size 4:**
|
| 287 |
|
| 288 |
-
1. `_ѥстъ_
|
| 289 |
-
2. `стъ_
|
| 290 |
-
3. `ѥстъ_⁙_
|
| 291 |
|
| 292 |
|
| 293 |
### Key Findings
|
| 294 |
|
| 295 |
- **Best Predictability:** Context-4 (word) with 97.9% predictability
|
| 296 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 297 |
-
- **Memory Trade-off:** Larger contexts require more storage (77,
|
| 298 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 299 |
|
| 300 |
---
|
|
@@ -310,24 +342,24 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 310 |
|
| 311 |
| Metric | Value |
|
| 312 |
|--------|-------|
|
| 313 |
-
| Vocabulary Size | 6,
|
| 314 |
-
| Total Tokens |
|
| 315 |
-
| Mean Frequency | 10.
|
| 316 |
| Median Frequency | 3 |
|
| 317 |
-
| Frequency Std Dev | 60.
|
| 318 |
|
| 319 |
### Most Common Words
|
| 320 |
|
| 321 |
| Rank | Word | Frequency |
|
| 322 |
|------|------|-----------|
|
| 323 |
-
| 1 | и | 2,
|
| 324 |
-
| 2 | ѥстъ | 2,
|
| 325 |
-
| 3 | лѣта |
|
| 326 |
-
| 4 | бѣ |
|
| 327 |
-
| 5 | въ |
|
| 328 |
-
| 6 | градъ |
|
| 329 |
-
| 7 | ꙁьри |
|
| 330 |
-
| 8 | такождє |
|
| 331 |
| 9 | жє | 512 |
|
| 332 |
| 10 | людии | 470 |
|
| 333 |
|
|
@@ -335,39 +367,39 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 335 |
|
| 336 |
| Rank | Word | Frequency |
|
| 337 |
|------|------|-----------|
|
| 338 |
-
| 1 |
|
| 339 |
-
| 2 |
|
| 340 |
-
| 3 |
|
| 341 |
-
| 4 |
|
| 342 |
-
| 5 |
|
| 343 |
-
| 6 |
|
| 344 |
-
| 7 |
|
| 345 |
-
| 8 |
|
| 346 |
-
| 9 |
|
| 347 |
-
| 10 |
|
| 348 |
|
| 349 |
### Zipf's Law Analysis
|
| 350 |
|
| 351 |
| Metric | Value |
|
| 352 |
|--------|-------|
|
| 353 |
-
| Zipf Coefficient | 0.
|
| 354 |
-
| R² (Goodness of Fit) | 0.
|
| 355 |
| Adherence Quality | **excellent** |
|
| 356 |
|
| 357 |
### Coverage Analysis
|
| 358 |
|
| 359 |
| Top N Words | Coverage |
|
| 360 |
|-------------|----------|
|
| 361 |
-
| Top 100 |
|
| 362 |
-
| Top 1,000 | 72.
|
| 363 |
| Top 5,000 | 96.2% |
|
| 364 |
| Top 10,000 | 0.0% |
|
| 365 |
|
| 366 |
### Key Findings
|
| 367 |
|
| 368 |
-
- **Zipf Compliance:** R²=0.
|
| 369 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 370 |
-
- **Long Tail:** -3,
|
| 371 |
|
| 372 |
---
|
| 373 |
## 5. Word Embeddings Evaluation
|
|
@@ -383,37 +415,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 383 |
|
| 384 |
### 5.1 Cross-Lingual Alignment
|
| 385 |
|
| 386 |
-
|
|
|
|
|
|
|
| 387 |
|
| 388 |
|
| 389 |
### 5.2 Model Comparison
|
| 390 |
|
| 391 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 392 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 393 |
-
| **mono_32d** | 32 | 0.
|
| 394 |
-
| **mono_64d** | 64 | 0.
|
| 395 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
### Key Findings
|
| 398 |
|
| 399 |
-
- **Best Isotropy:**
|
| 400 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 401 |
-
- **Alignment Quality:**
|
| 402 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 403 |
|
| 404 |
---
|
| 405 |
## 6. Morphological Analysis (Experimental)
|
| 406 |
|
| 407 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 408 |
-
|
| 409 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 410 |
|
| 411 |
### 6.1 Productivity & Complexity
|
| 412 |
|
| 413 |
| Metric | Value | Interpretation | Recommendation |
|
| 414 |
|--------|-------|----------------|----------------|
|
| 415 |
-
| Productivity Index | **
|
| 416 |
-
| Idiomaticity Gap |
|
| 417 |
|
| 418 |
### 6.2 Affix Inventory (Productive Units)
|
| 419 |
|
|
@@ -422,20 +457,20 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 422 |
#### Productive Prefixes
|
| 423 |
| Prefix | Examples |
|
| 424 |
|--------|----------|
|
| 425 |
-
|
|
| 426 |
-
|
|
| 427 |
|
| 428 |
#### Productive Suffixes
|
| 429 |
| Suffix | Examples |
|
| 430 |
|--------|----------|
|
| 431 |
-
| `-ъ` |
|
| 432 |
-
| `-къ` |
|
| 433 |
-
|
|
| 434 |
-
|
|
| 435 |
-
|
|
| 436 |
-
|
|
| 437 |
-
|
|
| 438 |
-
|
|
| 439 |
|
| 440 |
### 6.3 Bound Stems (Lexical Roots)
|
| 441 |
|
|
@@ -443,18 +478,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 443 |
|
| 444 |
| Stem | Cohesion | Substitutability | Examples |
|
| 445 |
|------|----------|------------------|----------|
|
| 446 |
-
| `боук` | 1.
|
| 447 |
-
| `ловѣ` | 1.
|
| 448 |
-
| `слов` | 1.
|
| 449 |
-
|
|
| 450 |
-
|
|
| 451 |
-
|
|
| 452 |
-
| `ьска` | 1.
|
| 453 |
-
| `овѣн` | 1.
|
| 454 |
-
| `град` | 1.
|
| 455 |
-
|
|
| 456 |
-
|
|
| 457 |
-
| `рьжа` | 1.
|
| 458 |
|
| 459 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 460 |
|
|
@@ -462,16 +497,16 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
|
|
| 462 |
|
| 463 |
| Prefix | Suffix | Frequency | Examples |
|
| 464 |
|--------|--------|-----------|----------|
|
| 465 |
-
|
|
| 466 |
-
|
|
| 467 |
-
| `-по` | `-нъ` | 11 words |
|
| 468 |
-
| `-по` |
|
| 469 |
-
| `-по` | `-къ` | 7 words | подъбрадъкъ,
|
| 470 |
-
| `-по` |
|
| 471 |
-
| `-пр` |
|
| 472 |
-
|
|
| 473 |
-
|
|
| 474 |
-
| `-по` |
|
| 475 |
|
| 476 |
### 6.5 Recursive Morpheme Segmentation
|
| 477 |
|
|
@@ -479,26 +514,28 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 479 |
|
| 480 |
| Word | Suggested Split | Confidence | Stem |
|
| 481 |
|------|-----------------|------------|------|
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
| аѵстралїиска | **`аѵстралїи-ска`** | 4.5 | `аѵстралїи` |
|
| 484 |
-
|
|
| 485 |
-
| франкїиска | **`франкїи-ска`** | 4.5 | `франкїи` |
|
| 486 |
| аѵстрїискъ | **`аѵстрїи-скъ`** | 4.5 | `аѵстрїи` |
|
| 487 |
-
|
|
| 488 |
-
|
|
| 489 |
-
|
|
| 490 |
-
|
|
| 491 |
-
|
|
| 492 |
-
|
|
| 493 |
-
|
|
| 494 |
-
| подълѣсьскъ | **`по-дълѣсь-скъ`** | 3.0 | `дълѣсь` |
|
| 495 |
-
| єѯадєканъ | **`єѯадє-ка-нъ`** | 3.0 | `єѯадє` |
|
| 496 |
-
| политическꙑ | **`по-литиче-скꙑ`** | 3.0 | `литиче` |
|
| 497 |
|
| 498 |
### 6.6 Linguistic Interpretation
|
| 499 |
|
| 500 |
> **Automated Insight:**
|
| 501 |
-
The language
|
|
|
|
|
|
|
| 502 |
|
| 503 |
---
|
| 504 |
## 7. Summary & Recommendations
|
|
@@ -725,4 +762,4 @@ MIT License - Free for academic and commercial use.
|
|
| 725 |
---
|
| 726 |
*Generated by Wikilangs Models Pipeline*
|
| 727 |
|
| 728 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: cu
|
| 3 |
+
language_name: Church Slavic
|
| 4 |
language_family: slavic_historical
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-slavic_historical
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.940
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.2434
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Church Slavic - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Church Slavic** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.877x | 3.88 | 0.1314% | 107,273 |
|
| 94 |
+
| **16k** | 4.367x | 4.37 | 0.1480% | 95,246 |
|
| 95 |
+
| **32k** | 4.940x 🏆 | 4.94 | 0.1675% | 84,200 |
|
| 96 |
|
| 97 |
### Tokenization Examples
|
| 98 |
|
| 99 |
Below are sample sentences tokenized with each vocabulary size:
|
| 100 |
|
| 101 |
+
**Sample 1:** `Лидьскъ повѣтъ · Бѣла Роусь Лидьскъ повѣтъ · Рѡсїиска їмпєрїꙗ`
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ` | 10 |
|
| 106 |
+
| 16k | `▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ` | 10 |
|
| 107 |
+
| 32k | `▁лидьскъ ▁повѣтъ ▁· ▁бѣла ▁роусь ▁лидьскъ ▁повѣтъ ▁· ▁рѡсїиска ▁їмпєрїꙗ` | 10 |
|
| 108 |
|
| 109 |
+
**Sample 2:** `Оꙁаскоу и · юга Санъ Паоулоу браꙁїльскъ градъ и обьщина ѥстъ ⁙ Людии 718.646 оби...`
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
+
| 8k | `▁о ꙁа скоу ▁и ▁· ▁ю га ▁санъ ▁паоу лоу ... (+24 more)` | 34 |
|
| 114 |
+
| 16k | `▁о ꙁа скоу ▁и ▁· ▁ю га ▁санъ ▁паоулоу ▁браꙁїл ... (+23 more)` | 33 |
|
| 115 |
+
| 32k | `▁оꙁаскоу ▁и ▁· ▁юга ▁санъ ▁паоулоу ▁браꙁїльскъ ▁градъ ▁и ▁обьщина ... (+19 more)` | 29 |
|
| 116 |
|
| 117 |
+
**Sample 3:** `Октадєканъ и инако н-октадєканъ ѫглѥводородьно вєщьство алканъ рѧдоу ѥстъ ⁙ Ѥгож...`
|
| 118 |
|
| 119 |
| Vocab | Tokens | Count |
|
| 120 |
|-------|--------|-------|
|
| 121 |
+
| 8k | `▁ок тадєканъ ▁и ▁инако ▁н - ок тадєканъ ▁ѫглѥводородьно ▁вєщьство ... (+19 more)` | 29 |
|
| 122 |
+
| 16k | `▁октадєканъ ▁и ▁инако ▁н - ок тадєканъ ▁ѫглѥводородьно ▁вєщьство ▁алканъ ... (+17 more)` | 27 |
|
| 123 |
+
| 32k | `▁октадєканъ ▁и ▁инако ▁н - октадєканъ ▁ѫглѥводородьно ▁вєщьство ▁алканъ ▁рѧдоу ... (+16 more)` | 26 |
|
| 124 |
|
| 125 |
|
| 126 |
### Key Findings
|
| 127 |
|
| 128 |
+
- **Best Compression:** 32k achieves 4.940x compression
|
| 129 |
+
- **Lowest UNK Rate:** 8k with 0.1314% unknown tokens
|
| 130 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 131 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 132 |
|
|
|
|
| 143 |
|
| 144 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 145 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 146 |
+
| **2-gram** | Word | 802 | 9.65 | 1,417 | 38.7% | 88.9% |
|
| 147 |
+
| **2-gram** | Subword | 451 🏆 | 8.82 | 2,622 | 56.3% | 95.5% |
|
| 148 |
+
| **3-gram** | Word | 965 | 9.91 | 1,734 | 35.4% | 82.3% |
|
| 149 |
+
| **3-gram** | Subword | 2,629 | 11.36 | 12,286 | 25.7% | 67.4% |
|
| 150 |
+
| **4-gram** | Word | 1,583 | 10.63 | 2,960 | 29.4% | 67.1% |
|
| 151 |
+
| **4-gram** | Subword | 8,218 | 13.00 | 33,187 | 16.1% | 45.2% |
|
| 152 |
+
| **5-gram** | Word | 1,176 | 10.20 | 2,224 | 32.9% | 74.0% |
|
| 153 |
+
| **5-gram** | Subword | 14,289 | 13.80 | 46,031 | 12.7% | 35.8% |
|
| 154 |
|
| 155 |
### Top 5 N-grams by Size
|
| 156 |
|
|
|
|
| 158 |
|
| 159 |
| Rank | N-gram | Count |
|
| 160 |
|------|--------|-------|
|
| 161 |
+
| 1 | `ꙁьри такождє` | 432 |
|
| 162 |
| 2 | `людии обитаѥтъ` | 260 |
|
| 163 |
| 3 | `ѥстъ людии` | 234 |
|
| 164 |
| 4 | `градъ ѥстъ` | 230 |
|
|
|
|
| 169 |
| Rank | N-gram | Count |
|
| 170 |
|------|--------|-------|
|
| 171 |
| 1 | `ѥстъ людии обитаѥтъ` | 181 |
|
| 172 |
+
| 2 | `дрьжавѣ бѣла роусь` | 120 |
|
| 173 |
+
| 3 | `въ дрьжавѣ бѣла` | 120 |
|
| 174 |
| 4 | `градъ ѥстъ людии` | 115 |
|
| 175 |
+
| 5 | `бѣла роусь сѣи` | 114 |
|
| 176 |
|
| 177 |
**4-grams (Word):**
|
| 178 |
|
| 179 |
| Rank | N-gram | Count |
|
| 180 |
|------|--------|-------|
|
| 181 |
| 1 | `въ дрьжавѣ бѣла роусь` | 120 |
|
| 182 |
+
| 2 | `дрьжавѣ бѣла роусь сѣи` | 114 |
|
| 183 |
| 3 | `оудѣлъ въ дрьжавѣ бѣла` | 114 |
|
| 184 |
+
| 4 | `ꙁємьскъ оудѣлъ въ дрьжавѣ` | 114 |
|
| 185 |
+
| 5 | `бѣла роусь сѣи оудѣлъ` | 114 |
|
| 186 |
+
|
| 187 |
+
**5-grams (Word):**
|
| 188 |
+
|
| 189 |
+
| Rank | N-gram | Count |
|
| 190 |
+
|------|--------|-------|
|
| 191 |
+
| 1 | `роусь сѣи оудѣлъ бѣ члѣнъ` | 114 |
|
| 192 |
+
| 2 | `ꙁємьскъ оудѣлъ въ дрьжавѣ бѣла` | 114 |
|
| 193 |
+
| 3 | `оудѣлъ въ дрьжавѣ бѣла роусь` | 114 |
|
| 194 |
+
| 4 | `бѣла роусь сѣи оудѣлъ бѣ` | 114 |
|
| 195 |
+
| 5 | `дрьжавѣ бѣла роусь сѣи оудѣлъ` | 114 |
|
| 196 |
|
| 197 |
**2-grams (Subword):**
|
| 198 |
|
| 199 |
| Rank | N-gram | Count |
|
| 200 |
|------|--------|-------|
|
| 201 |
+
| 1 | `ъ _` | 17,697 |
|
| 202 |
+
| 2 | `и _` | 9,192 |
|
| 203 |
+
| 3 | `а _` | 8,589 |
|
| 204 |
+
| 4 | `с т` | 8,369 |
|
| 205 |
+
| 5 | `_ с` | 6,568 |
|
| 206 |
|
| 207 |
**3-grams (Subword):**
|
| 208 |
|
| 209 |
| Rank | N-gram | Count |
|
| 210 |
|------|--------|-------|
|
| 211 |
+
| 1 | `т ъ _` | 5,939 |
|
| 212 |
+
| 2 | `_ · _` | 4,413 |
|
| 213 |
+
| 3 | `ь с к` | 3,883 |
|
| 214 |
+
| 4 | `_ ⁙ _` | 3,094 |
|
| 215 |
+
| 5 | `с т ъ` | 3,038 |
|
| 216 |
|
| 217 |
**4-grams (Subword):**
|
| 218 |
|
| 219 |
| Rank | N-gram | Count |
|
| 220 |
|------|--------|-------|
|
| 221 |
+
| 1 | `_ ѥ с т` | 2,895 |
|
| 222 |
+
| 2 | `с т ъ _` | 2,876 |
|
| 223 |
+
| 3 | `ѥ с т ъ` | 2,698 |
|
| 224 |
+
| 4 | `ъ _ ⁙ _` | 1,902 |
|
| 225 |
+
| 5 | `т ъ _ ⁙` | 1,813 |
|
| 226 |
+
|
| 227 |
+
**5-grams (Subword):**
|
| 228 |
+
|
| 229 |
+
| Rank | N-gram | Count |
|
| 230 |
+
|------|--------|-------|
|
| 231 |
+
| 1 | `_ ѥ с т ъ` | 2,695 |
|
| 232 |
+
| 2 | `ѥ с т ъ _` | 2,559 |
|
| 233 |
+
| 3 | `т ъ _ ⁙ _` | 1,796 |
|
| 234 |
+
| 4 | `_ г р а д` | 1,425 |
|
| 235 |
+
| 5 | `с т ъ _ ⁙` | 1,340 |
|
| 236 |
|
| 237 |
|
| 238 |
### Key Findings
|
| 239 |
|
| 240 |
- **Best Perplexity:** 2-gram (subword) with 451
|
| 241 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 242 |
+
- **Coverage:** Top-1000 patterns cover ~36% of corpus
|
| 243 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 244 |
|
| 245 |
---
|
|
|
|
| 255 |
|
| 256 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 257 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 258 |
+
| **1** | Word | 0.4863 | 1.401 | 2.62 | 18,746 | 51.4% |
|
| 259 |
+
| **1** | Subword | 0.9940 | 1.992 | 7.09 | 1,077 | 0.6% |
|
| 260 |
+
| **2** | Word | 0.1229 | 1.089 | 1.22 | 48,473 | 87.7% |
|
| 261 |
+
| **2** | Subword | 0.8201 | 1.766 | 4.18 | 7,633 | 18.0% |
|
| 262 |
+
| **3** | Word | 0.0444 | 1.031 | 1.07 | 58,365 | 95.6% |
|
| 263 |
+
| **3** | Subword | 0.5514 | 1.466 | 2.43 | 31,900 | 44.9% |
|
| 264 |
+
| **4** | Word | 0.0207 🏆 | 1.014 | 1.03 | 61,255 | 97.9% |
|
| 265 |
+
| **4** | Subword | 0.3387 | 1.265 | 1.70 | 77,420 | 66.1% |
|
| 266 |
|
| 267 |
### Generated Text Samples (Word-based)
|
| 268 |
|
|
|
|
| 270 |
|
| 271 |
**Context Size 1:**
|
| 272 |
|
| 273 |
+
1. `и ꙁападьнꙑ дъвинꙑ роуси пьсаниꙗ алєѯандра данїиловища свѣтьлѣиша кънѧꙃа владєнию бѣ съ словѣньскомь ...`
|
| 274 |
+
2. `ѥстъ стольнъ градъ ѥстъ нѣмьцкомь єпископомь албєртомь а нꙑнѣ жє носьнꙑи приꙁвѫкъ нє ꙁнаашє ѥдьнъ ис`
|
| 275 |
+
3. `лѣта їмпєратѡръ ѥстъ пєроунъ сварогъ ѩꙁꙑчьство`
|
| 276 |
|
| 277 |
**Context Size 2:**
|
| 278 |
|
| 279 |
+
1. `ꙁьри такождє обитѣльско напьсаниѥ владиславъ їѡаннъ асєн҄ь а҃ и блъгарїꙗ цѣсарь бѣ їѡанна асєнꙗ а҃ с...`
|
| 280 |
+
2. `людии обитаѥтъ 6 9 лєѡ́дръ їсторїꙗ лѣта по нѣмьць ѥдьнѥниꙗ бєрлинъ пакꙑ сталъ ѥстъ ꙁьри такъждє брюѯ...`
|
| 281 |
+
3. `ѥстъ людии 2 лєѡдръ обитаѥтъ пакистана дрьжавьнъ ѩꙁꙑкъ тѷрчьскъ ѥстъ їсторїꙗ дѣлꙗ охранꙑ съдравиꙗ лѣ...`
|
| 282 |
|
| 283 |
**Context Size 3:**
|
| 284 |
|
| 285 |
+
1. `ѥстъ людии обитаѥтъ 398 и иꙁъ ихъжє мѫжь 175 и жєнъ 223 наибол҄ии числомь народъ роусьсци ѥстъ 99`
|
| 286 |
+
2. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома могилєвьска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣ...`
|
| 287 |
+
3. `дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ градоу витьбьскъ въ ѡбласти рѣкома мѣньска ѡбласть повѣтъ има...`
|
| 288 |
|
| 289 |
**Context Size 4:**
|
| 290 |
|
| 291 |
+
1. `въ дрьжавѣ бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома бєрєстєиска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣ...`
|
| 292 |
+
2. `роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома мѣньска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ сєльскъ съвѣтъ ...`
|
| 293 |
+
3. `бѣла роусь сѣи оудѣлъ бѣ члѣнъ ѡбласти рѣкома витєбьска ѡбласть повѣтъ имаѥтъ оурѧдъ рѣкомъ сєльскъ ...`
|
| 294 |
|
| 295 |
|
| 296 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 299 |
|
| 300 |
**Context Size 1:**
|
| 301 |
|
| 302 |
+
1. `_иното_ѥгонокꙑ_ѥ`
|
| 303 |
+
2. `а_одаскꙑ_сточлѣс`
|
| 304 |
+
3. `орлѩꙁа_гокє_ꙁꙑ_с`
|
| 305 |
|
| 306 |
**Context Size 2:**
|
| 307 |
|
| 308 |
+
1. `ъ_обирѡсьскꙑ_рѣвь`
|
| 309 |
+
2. `и_•_всєли_·_рѡпьс`
|
| 310 |
+
3. `а_посладъпрꙗѥтъ_ꙁ`
|
| 311 |
|
| 312 |
**Context Size 3:**
|
| 313 |
|
| 314 |
+
1. `тъ_⁙_глаголєптємпє`
|
| 315 |
+
2. `_·_дѣлъ_бѣлороусло`
|
| 316 |
+
3. `ьскъ_прьвовец_гора`
|
| 317 |
|
| 318 |
**Context Size 4:**
|
| 319 |
|
| 320 |
+
1. `_ѥстъ_·_мїхаилъ_хоу`
|
| 321 |
+
2. `стъ_словєниꙗ_мѫжь_с`
|
| 322 |
+
3. `ѥстъ_⁙_глагоданьска`
|
| 323 |
|
| 324 |
|
| 325 |
### Key Findings
|
| 326 |
|
| 327 |
- **Best Predictability:** Context-4 (word) with 97.9% predictability
|
| 328 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 329 |
+
- **Memory Trade-off:** Larger contexts require more storage (77,420 contexts)
|
| 330 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 331 |
|
| 332 |
---
|
|
|
|
| 342 |
|
| 343 |
| Metric | Value |
|
| 344 |
|--------|-------|
|
| 345 |
+
| Vocabulary Size | 6,189 |
|
| 346 |
+
| Total Tokens | 62,865 |
|
| 347 |
+
| Mean Frequency | 10.16 |
|
| 348 |
| Median Frequency | 3 |
|
| 349 |
+
| Frequency Std Dev | 60.08 |
|
| 350 |
|
| 351 |
### Most Common Words
|
| 352 |
|
| 353 |
| Rank | Word | Frequency |
|
| 354 |
|------|------|-----------|
|
| 355 |
+
| 1 | и | 2,821 |
|
| 356 |
+
| 2 | ѥстъ | 2,694 |
|
| 357 |
+
| 3 | лѣта | 952 |
|
| 358 |
+
| 4 | бѣ | 910 |
|
| 359 |
+
| 5 | въ | 842 |
|
| 360 |
+
| 6 | градъ | 792 |
|
| 361 |
+
| 7 | ꙁьри | 536 |
|
| 362 |
+
| 8 | такождє | 533 |
|
| 363 |
| 9 | жє | 512 |
|
| 364 |
| 10 | людии | 470 |
|
| 365 |
|
|
|
|
| 367 |
|
| 368 |
| Rank | Word | Frequency |
|
| 369 |
|------|------|-----------|
|
| 370 |
+
| 1 | катєгорїꙗ | 2 |
|
| 371 |
+
| 2 | سخ | 2 |
|
| 372 |
+
| 3 | هس | 2 |
|
| 373 |
+
| 4 | ش | 2 |
|
| 374 |
+
| 5 | ؤخخم | 2 |
|
| 375 |
+
| 6 | خىث | 2 |
|
| 376 |
+
| 7 | ىعةلاثق | 2 |
|
| 377 |
+
| 8 | صشس | 2 |
|
| 378 |
+
| 9 | пльсковьская | 2 |
|
| 379 |
+
| 10 | маѭтъ | 2 |
|
| 380 |
|
| 381 |
### Zipf's Law Analysis
|
| 382 |
|
| 383 |
| Metric | Value |
|
| 384 |
|--------|-------|
|
| 385 |
+
| Zipf Coefficient | 0.9373 |
|
| 386 |
+
| R² (Goodness of Fit) | 0.986343 |
|
| 387 |
| Adherence Quality | **excellent** |
|
| 388 |
|
| 389 |
### Coverage Analysis
|
| 390 |
|
| 391 |
| Top N Words | Coverage |
|
| 392 |
|-------------|----------|
|
| 393 |
+
| Top 100 | 41.0% |
|
| 394 |
+
| Top 1,000 | 72.8% |
|
| 395 |
| Top 5,000 | 96.2% |
|
| 396 |
| Top 10,000 | 0.0% |
|
| 397 |
|
| 398 |
### Key Findings
|
| 399 |
|
| 400 |
+
- **Zipf Compliance:** R²=0.9863 indicates excellent adherence to Zipf's law
|
| 401 |
+
- **High Frequency Dominance:** Top 100 words cover 41.0% of corpus
|
| 402 |
+
- **Long Tail:** -3,811 words needed for remaining 100.0% coverage
|
| 403 |
|
| 404 |
---
|
| 405 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 415 |
|
| 416 |
### 5.1 Cross-Lingual Alignment
|
| 417 |
|
| 418 |
+

|
| 419 |
+
|
| 420 |
+

|
| 421 |
|
| 422 |
|
| 423 |
### 5.2 Model Comparison
|
| 424 |
|
| 425 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 426 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 427 |
+
| **mono_32d** | 32 | 0.2434 | 0.4441 | N/A | N/A |
|
| 428 |
+
| **mono_64d** | 64 | 0.0769 | 0.4495 | N/A | N/A |
|
| 429 |
+
| **mono_128d** | 128 | 0.0128 | 0.4700 | N/A | N/A |
|
| 430 |
+
| **aligned_32d** | 32 | 0.2434 🏆 | 0.4485 | 0.0177 | 0.1032 |
|
| 431 |
+
| **aligned_64d** | 64 | 0.0769 | 0.4699 | 0.0324 | 0.1475 |
|
| 432 |
+
| **aligned_128d** | 128 | 0.0128 | 0.4554 | 0.0442 | 0.1357 |
|
| 433 |
|
| 434 |
### Key Findings
|
| 435 |
|
| 436 |
+
- **Best Isotropy:** aligned_32d with 0.2434 (more uniform distribution)
|
| 437 |
+
- **Semantic Density:** Average pairwise similarity of 0.4562. Lower values indicate better semantic separation.
|
| 438 |
+
- **Alignment Quality:** Aligned models achieve up to 4.4% R@1 in cross-lingual retrieval.
|
| 439 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 440 |
|
| 441 |
---
|
| 442 |
## 6. Morphological Analysis (Experimental)
|
| 443 |
|
|
|
|
|
|
|
| 444 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 445 |
|
| 446 |
### 6.1 Productivity & Complexity
|
| 447 |
|
| 448 |
| Metric | Value | Interpretation | Recommendation |
|
| 449 |
|--------|-------|----------------|----------------|
|
| 450 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 451 |
+
| Idiomaticity Gap | **1.066** | High formulaic/idiomatic content | - |
|
| 452 |
|
| 453 |
### 6.2 Affix Inventory (Productive Units)
|
| 454 |
|
|
|
|
| 457 |
#### Productive Prefixes
|
| 458 |
| Prefix | Examples |
|
| 459 |
|--------|----------|
|
| 460 |
+
| `-по` | поѩла, погꙑнѫли, польꙃєвати |
|
| 461 |
+
| `-пр` | прєждє, придънѣстрии, прасловѣньскъ |
|
| 462 |
|
| 463 |
#### Productive Suffixes
|
| 464 |
| Suffix | Examples |
|
| 465 |
|--------|----------|
|
| 466 |
+
| `-ъ` | въꙁвращєнъ, дѣлъ, ѳєр��пѡнтъ |
|
| 467 |
+
| `-къ` | липьтьскъ, грьчьскъ, словѣньскъ |
|
| 468 |
+
| `-нъ` | въꙁвращєнъ, гла́вьнъ, съꙁиждєнъ |
|
| 469 |
+
| `-ка` | кировьска, фроунꙁєньска, видодъска |
|
| 470 |
+
| `-скъ` | липьтьскъ, грьчьскъ, словѣньскъ |
|
| 471 |
+
| `-ска` | кировьска, фроунꙁєньска, видодъска |
|
| 472 |
+
| `-ьска` | кировьска, фроунꙁєньска, городєньска |
|
| 473 |
+
| `-кꙑ` | блъгарьскꙑ, хръватьскꙑ, словѣньскꙑ |
|
| 474 |
|
| 475 |
### 6.3 Bound Stems (Lexical Roots)
|
| 476 |
|
|
|
|
| 478 |
|
| 479 |
| Stem | Cohesion | Substitutability | Examples |
|
| 480 |
|------|----------|------------------|----------|
|
| 481 |
+
| `боук` | 1.89x | 14 contexts | боукꙑ, боуквꙑ, боукъвь |
|
| 482 |
+
| `ловѣ` | 1.63x | 18 contexts | словѣ, чловѣкъ, словѣнє |
|
| 483 |
+
| `слов` | 1.77x | 14 contexts | слово, словѣ, слова |
|
| 484 |
+
| `ласт` | 1.55x | 20 contexts | властъ, власть, власти |
|
| 485 |
+
| `ьжав` | 1.75x | 13 contexts | дрьжавꙑ, дрьжавъ, дрьжавѫ |
|
| 486 |
+
| `ньск` | 1.65x | 15 contexts | мѣньска, мѣньскъ, жєньскъ |
|
| 487 |
+
| `ьска` | 1.64x | 14 contexts | омьска, єстьска, сѣрьска |
|
| 488 |
+
| `овѣн` | 1.83x | 10 contexts | словѣнє, словѣнъ, словѣнїꙗ |
|
| 489 |
+
| `град` | 1.63x | 13 contexts | градѣ, градъ, гради |
|
| 490 |
+
| `блас` | 1.69x | 10 contexts | ѡбласти, области, ѡбласть |
|
| 491 |
+
| `ьскъ` | 1.63x | 11 contexts | омьскъ, римьскъ, ꙁємьскъ |
|
| 492 |
+
| `рьжа` | 1.69x | 9 contexts | дрьжавꙑ, дрьжавъ, дрьжавѫ |
|
| 493 |
|
| 494 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 495 |
|
|
|
|
| 497 |
|
| 498 |
| Prefix | Suffix | Frequency | Examples |
|
| 499 |
|--------|--------|-----------|----------|
|
| 500 |
+
| `-по` | `-ъ` | 34 words | побѣдъ, помѣновєнъ |
|
| 501 |
+
| `-пр` | `-ъ` | 34 words | прьвꙑимъ, проливъ |
|
| 502 |
+
| `-по` | `-нъ` | 11 words | помѣновєнъ, посъланъ |
|
| 503 |
+
| `-по` | `-ка` | 7 words | подъкарпатьска, по́л̑ьска |
|
| 504 |
+
| `-по` | `-къ` | 7 words | подъбрадъкъ, подълѣсьскъ |
|
| 505 |
+
| `-по` | `-скъ` | 6 words | подълѣсьскъ, пол҄ьскъ |
|
| 506 |
+
| `-пр` | `-нъ` | 6 words | прѣданъ, природьнъ |
|
| 507 |
+
| `-пр` | `-къ` | 6 words | приморьскъ, прьвотравєньскъ |
|
| 508 |
+
| `-по` | `-ска` | 5 words | подъкарпатьска, по́л̑ьска |
|
| 509 |
+
| `-по` | `-ьскъ` | 5 words | подълѣсьскъ, пол҄ьскъ |
|
| 510 |
|
| 511 |
### 6.5 Recursive Morpheme Segmentation
|
| 512 |
|
|
|
|
| 514 |
|
| 515 |
| Word | Suggested Split | Confidence | Stem |
|
| 516 |
|------|-----------------|------------|------|
|
| 517 |
+
| гєѡргїиска | **`гєѡргїи-ска`** | 4.5 | `гєѡргїи` |
|
| 518 |
+
| посєлѥниѥ | **`по-��єлѥниѥ`** | 4.5 | `сєлѥниѥ` |
|
| 519 |
+
| октѡврїиска | **`октѡврїи-ска`** | 4.5 | `октѡврїи` |
|
| 520 |
+
| посєлѥниꙗ | **`по-сєлѥниꙗ`** | 4.5 | `сєлѥниꙗ` |
|
| 521 |
+
| самостоꙗтєл҄ьна | **`самостоꙗтєл҄ь-на`** | 4.5 | `самостоꙗтєл҄ь` |
|
| 522 |
| аѵстралїиска | **`аѵстралїи-ска`** | 4.5 | `аѵстралїи` |
|
| 523 |
+
| самостоꙗтѣльна | **`самостоꙗтѣль-на`** | 4.5 | `самостоꙗтѣль` |
|
|
|
|
| 524 |
| аѵстрїискъ | **`аѵстрїи-скъ`** | 4.5 | `аѵстрїи` |
|
| 525 |
+
| приморьскъ | **`пр-имор-ьскъ`** | 3.0 | `имор` |
|
| 526 |
+
| подольскъ | **`по-доль-скъ`** | 3.0 | `доль` |
|
| 527 |
+
| полїтїчьскъ | **`по-лїтїч-ьскъ`** | 3.0 | `лїтїч` |
|
| 528 |
+
| подъꙁємьнъ | **`по-дъꙁємь-нъ`** | 3.0 | `дъꙁємь` |
|
| 529 |
+
| прѣѥмьникъ | **`пр-ѣѥмьни-къ`** | 3.0 | `ѣѥмьни` |
|
| 530 |
+
| потрѣбьна | **`по-трѣбь-на`** | 3.0 | `трѣбь` |
|
| 531 |
+
| политическа | **`по-литиче-ска`** | 3.0 | `литиче` |
|
|
|
|
|
|
|
|
|
|
| 532 |
|
| 533 |
### 6.6 Linguistic Interpretation
|
| 534 |
|
| 535 |
> **Automated Insight:**
|
| 536 |
+
The language Church Slavic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 537 |
+
|
| 538 |
+
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
|
| 539 |
|
| 540 |
---
|
| 541 |
## 7. Summary & Recommendations
|
|
|
|
| 762 |
---
|
| 763 |
*Generated by Wikilangs Models Pipeline*
|
| 764 |
|
| 765 |
+
*Report Date: 2026-01-03 20:59:44*
|
models/embeddings/aligned/cu_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70955bffb6c7be3d460ab37ab99c40c6e50f57e778afffe5c66463f7d02f4c98
|
| 3 |
+
size 1026168646
|
models/embeddings/aligned/cu_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cu", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cu_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2cdfcacbc535058b28d6a343f802b99aa2ba19ed5e169a8e800c130504bad0ec
|
| 3 |
+
size 65664
|
models/embeddings/aligned/cu_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cu",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 339,
|
| 7 |
+
"vocab_size": 2074
|
| 8 |
+
}
|
models/embeddings/aligned/cu_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ead4a44192bbe83de7d9b363ee83835a8dd73ba2f06a04090d4261e7ffee25bf
|
| 3 |
+
size 256575814
|
models/embeddings/aligned/cu_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cu", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cu_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:885bc7e6b0aba665ab4416a5b9261448be3aed77e6e445dd8d129854b8f6173a
|
| 3 |
+
size 4224
|
models/embeddings/aligned/cu_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cu",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 339,
|
| 7 |
+
"vocab_size": 2074
|
| 8 |
+
}
|
models/embeddings/aligned/cu_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2dde8a72af6e55db50167090622b22b1b791150967af8dcd91220c45f18147de
|
| 3 |
+
size 513106758
|
models/embeddings/aligned/cu_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cu", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cu_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48f4625de4927eb6c16995c71459ef48aa6fedc42f2ee6b5c236ace594e84724
|
| 3 |
+
size 16512
|
models/embeddings/aligned/cu_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cu",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 339,
|
| 7 |
+
"vocab_size": 2074
|
| 8 |
+
}
|
models/embeddings/monolingual/cu_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70955bffb6c7be3d460ab37ab99c40c6e50f57e778afffe5c66463f7d02f4c98
|
| 3 |
+
size 1026168646
|
models/embeddings/monolingual/cu_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 2074
|
| 15 |
}
|
models/embeddings/monolingual/cu_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ead4a44192bbe83de7d9b363ee83835a8dd73ba2f06a04090d4261e7ffee25bf
|
| 3 |
+
size 256575814
|
models/embeddings/monolingual/cu_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 2074
|
| 15 |
}
|
models/embeddings/monolingual/cu_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2dde8a72af6e55db50167090622b22b1b791150967af8dcd91220c45f18147de
|
| 3 |
+
size 513106758
|
models/embeddings/monolingual/cu_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 2074
|
| 15 |
}
|
models/subword_markov/cu_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce1edbc4ff3d89a5297689a621049645e7677368c7fb9b48728cbb25ec12c6c9
|
| 3 |
+
size 58311
|
models/subword_markov/cu_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 1077,
|
| 6 |
+
"total_transitions": 514006
|
| 7 |
}
|
models/subword_markov/cu_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5afdfa50dfee4f62d0879905cf4838a1b3d40c81ab9b41b63d6ea6cd457392a8
|
| 3 |
+
size 239107
|
models/subword_markov/cu_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 7633,
|
| 6 |
+
"total_transitions": 512684
|
| 7 |
}
|
models/subword_markov/cu_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90f1b1cf9de0b5de2daac2e64cce22d8d3bad88762ccaa9bb48cf47e57035ac3
|
| 3 |
+
size 672469
|
models/subword_markov/cu_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 31900,
|
| 6 |
+
"total_transitions": 511362
|
| 7 |
}
|
models/subword_markov/cu_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa58cd0ccf4b588c6e592483927a99e9989ca8ccc80a23375416ca43d4c3e14b
|
| 3 |
+
size 1340422
|
models/subword_markov/cu_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 77420,
|
| 6 |
+
"total_transitions": 510040
|
| 7 |
}
|
models/subword_ngram/cu_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:933a47acb9a1fe04cf5f8c339161bfde593aa2fd5b818de54fb7999685005a82
|
| 3 |
+
size 33490
|
models/subword_ngram/cu_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_ngrams": 2622,
|
| 6 |
+
"total_ngrams": 514006
|
| 7 |
}
|
models/subword_ngram/cu_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13bdd3020e3be644849cb639166b11a14f0d83c1282fab06e46198408ad6d103
|
| 3 |
+
size 160334
|
models/subword_ngram/cu_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_ngrams": 12286,
|
| 6 |
+
"total_ngrams": 512684
|
| 7 |
}
|
models/subword_ngram/cu_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46deafa006f2e1ae5c400359ae38e82643726ec70519c36b25a393d843cc864f
|
| 3 |
+
size 454137
|
models/subword_ngram/cu_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_ngrams": 33187,
|
| 6 |
+
"total_ngrams": 511362
|
| 7 |
}
|
models/subword_ngram/cu_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e47b0a6dacdf5ec7fb74ed8a879e7c717639ec579260d92137c1833b2adc5b99
|
| 3 |
+
size 647025
|
models/subword_ngram/cu_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "cu",
|
| 5 |
+
"unique_ngrams": 46031,
|
| 6 |
+
"total_ngrams": 510040
|
| 7 |
+
}
|
models/tokenizer/cu_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54fcb6b0322245c2814ee47ec98d61ba57fb6cf34a9a04b1300e24ef4e09195a
|
| 3 |
+
size 574629
|
models/tokenizer/cu_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/cu_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2bb8f76ddc298d8534b123428e82c239b77c35db3f1c65d128555ffda988a2bf
|
| 3 |
+
size 960739
|
models/tokenizer/cu_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/cu_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbc737e0003034cedb55b6f7127462b442f563eace2f98a46b5dfee83b21875f
|
| 3 |
+
size 398308
|
models/tokenizer/cu_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/cu_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6f3631f2d06984dc24e1e85fd9b488bc9622b27e62320507f6303dd21c6b88c
|
| 3 |
+
size 110897
|
models/vocabulary/cu_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "cu",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "cu",
|
| 3 |
+
"vocabulary_size": 6189,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.24925489780509452,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.3413164134423059,
|
| 9 |
+
"top_1000": 0.6060164518564635,
|
| 10 |
+
"top_5000": 0.80122660379108,
|
| 11 |
+
"top_10000": 0.8832077146225478
|
| 12 |
},
|
| 13 |
+
"hapax_count": 12628,
|
| 14 |
+
"hapax_ratio": 0.6710952861773928,
|
| 15 |
+
"total_documents": 1322
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/cu_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e158acd99119e6c0a3a722c0a7569dd852b3557e8bbb1bccab6a895c47250485
|
| 3 |
+
size 677558
|
models/word_markov/cu_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 18746,
|
| 6 |
+
"total_transitions": 74171
|
| 7 |
}
|
models/word_markov/cu_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9ab422ae98a7adcbf1a54254ea783e82761b073b30443fa4e0ca363abbf17ea
|
| 3 |
+
size 1299365
|
models/word_markov/cu_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 48473,
|
| 6 |
+
"total_transitions": 72849
|
| 7 |
}
|
models/word_markov/cu_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b14683206db82be572903e01bee66092772026bb58cc5a9818fb9ae0ba5b1059
|
| 3 |
+
size 1649938
|
models/word_markov/cu_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cu",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cu",
|
| 5 |
+
"unique_contexts": 58365,
|
| 6 |
+
"total_transitions": 71527
|
| 7 |
}
|