willcai commited on
Commit
f23f75c
·
1 Parent(s): 448261e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2_common_voice_accents_5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2_common_voice_accents_5
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0027
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0003
39
+ - train_batch_size: 48
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - total_train_batch_size: 384
45
+ - total_eval_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 30
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 4.4163 | 1.34 | 400 | 0.5520 |
57
+ | 0.3305 | 2.68 | 800 | 0.1698 |
58
+ | 0.2138 | 4.03 | 1200 | 0.1104 |
59
+ | 0.1714 | 5.37 | 1600 | 0.0944 |
60
+ | 0.1546 | 6.71 | 2000 | 0.0700 |
61
+ | 0.1434 | 8.05 | 2400 | 0.0610 |
62
+ | 0.1272 | 9.4 | 2800 | 0.0493 |
63
+ | 0.1183 | 10.74 | 3200 | 0.0371 |
64
+ | 0.1113 | 12.08 | 3600 | 0.0468 |
65
+ | 0.1013 | 13.42 | 4000 | 0.0336 |
66
+ | 0.0923 | 14.77 | 4400 | 0.0282 |
67
+ | 0.0854 | 16.11 | 4800 | 0.0410 |
68
+ | 0.0791 | 17.45 | 5200 | 0.0252 |
69
+ | 0.0713 | 18.79 | 5600 | 0.0128 |
70
+ | 0.0662 | 20.13 | 6000 | 0.0252 |
71
+ | 0.0635 | 21.48 | 6400 | 0.0080 |
72
+ | 0.0607 | 22.82 | 6800 | 0.0098 |
73
+ | 0.0557 | 24.16 | 7200 | 0.0069 |
74
+ | 0.0511 | 25.5 | 7600 | 0.0057 |
75
+ | 0.0474 | 26.85 | 8000 | 0.0046 |
76
+ | 0.045 | 28.19 | 8400 | 0.0037 |
77
+ | 0.0426 | 29.53 | 8800 | 0.0027 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.17.0
83
+ - Pytorch 1.10.2+cu102
84
+ - Datasets 1.18.4
85
+ - Tokenizers 0.11.6