william0816 commited on
Commit
97f7f11
·
verified ·
1 Parent(s): e6ffd7a

Add model card

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: other
4
+ tags:
5
+ - finance
6
+ - risk-relation
7
+ - retrieval
8
+ - encoder
9
+ - feature-extraction
10
+ - stock-prediction
11
+ pipeline_tag: feature-extraction
12
+ ---
13
+
14
+ # Financial Risk Identification through Dual-view Adaptation — Encoder
15
+
16
+ This repository hosts the pretrained encoder from the work **“Financial Risk Identification through Dual-view Adaptation.”**
17
+ The model is designed to uncover **inter-firm risk relations** from financial text, supporting downstream tasks such as **retrieval**, **relation mining**, and **stock-signal experiments** where relation strength acts as a feature.
18
+
19
+ > **Files**
20
+ > - `pytorch_model.safetensors` — model weights
21
+ > - `config.json` — model configuration
22
+ > - *(optional but recommended)* `README.md` (this file)
23
+
24
+ ---
25
+
26
+ ## ✨ What’s special (Dual-view Adaptation)
27
+
28
+ The model aligns two complementary “views” of firm relations and adapts them during training:
29
+
30
+ - **Lexical view (`lex`)** — focuses on token/phrase-level and domain terms common in 10-K and financial news.
31
+ - **Temporal view (`time`)** — encourages stability/consistency of relations across reporting periods and evolving events.
32
+
33
+ A **two-view combination (“Best”)** integrates both signals and yields stronger retrieval quality and more stable risk-relation estimates. Ablations (`lex`, `time`) are also supported for analysis.
34
+
35
+ ---
36
+
37
+ ## 🔧 Intended Use
38
+
39
+ - **Feature extraction / sentence embeddings** for paragraphs, sections, or documents in financial filings.
40
+ - **Retrieval & ranking**: compute similarities between queries (e.g., “supply chain risk for X”) and candidate passages.
41
+ - **Risk-relation estimation**: aggregate cross-document similarities to produce pairwise firm relation scores used in downstream analytics.
42
+
43
+ > ⚠️ Not a generative LLM. Use it as an **encoder** (feature extractor).
44
+
45
+ ---
46
+
47
+ ## 🚀 Quickstart (Transformers)
48
+
49
+ ```python
50
+ import torch
51
+ from transformers import AutoTokenizer, AutoModel
52
+
53
+ MODEL_ID = "william0816/Dual_View_Financial_Encoder" # replace with your repo id
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
56
+ model = AutoModel.from_pretrained(MODEL_ID)
57
+
58
+ def mean_pool(last_hidden_state, attention_mask):
59
+ # Mean-pool w.r.t. the attention mask
60
+ mask = attention_mask.unsqueeze(-1).type_as(last_hidden_state)
61
+ summed = (last_hidden_state * mask).sum(dim=1)
62
+ counts = torch.clamp(mask.sum(dim=1), min=1e-9)
63
+ return summed / counts
64
+
65
+ texts = [
66
+ "The company faces supplier concentration risk due to a single-source vendor.",
67
+ "Management reported foreign exchange exposure impacting Q4 margins."
68
+ ]
69
+
70
+ enc = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
71
+ with torch.no_grad():
72
+ outputs = model(**enc)
73
+ embeddings = mean_pool(outputs.last_hidden_state, enc["attention_mask"])
74
+
75
+ # Cosine similarity for retrieval
76
+ emb_norm = torch.nn.functional.normalize(embeddings, p=2, dim=1)
77
+ similarity = emb_norm @ emb_norm.T
78
+ print(similarity)
79
+ ```
80
+
81
+ ## 🖇️ Citation
82
+ If you use this model or the dual-view methodology, please cite:
83
+ ```bibtex
84
+ @misc{financial_risk_dualview_2025,
85
+ title = {Financial Risk Identification through Dual-view Adaptation},
86
+ author = {Chiu, Wei-Ning and collaborators},
87
+ year = {2025},
88
+ note = {Preprint/Project},
89
+ howpublished = {\url{https://huggingface.co/william0816/Dual_View_Financial_Encoder}}
90
+ }