File size: 3,401 Bytes
31980b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
library_name: transformers
base_model: katuni4ka/tiny-random-qwen1.5-moe
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e61e89f0-854a-4922-8d25-dae435e91af0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: katuni4ka/tiny-random-qwen1.5-moe
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- 95544452e61c7393_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/95544452e61c7393_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/e61e89f0-854a-4922-8d25-dae435e91af0
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
tokenizer_type: Qwen2TokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: katuni4ka/tiny-random-qwen1.5-moe-/workspace/input_data/95544452e61c7393_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
```
</details><br>
# e61e89f0-854a-4922-8d25-dae435e91af0
This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 11.6281
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0031 | 1 | 11.9223 |
| 11.7325 | 0.0629 | 20 | 11.6783 |
| 11.6304 | 0.1258 | 40 | 11.6281 |
### Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
|