File size: 1,258 Bytes
1f6e2fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
env_name: LunarLander-v3
tags:
- LunarLander-v3
- rainbow-dqn (with uniform sampling)
- reinforcement-learning
- custom-implementation
- deep-q-learning
- pytorch
- rainbow
- dqn
model-index:
- name: Rainbow-1d-LunarLander-v3-NoPer
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v3
type: LunarLander-v3
metrics:
- type: mean_reward
value: 282.11 +/- 19.77
name: mean_reward
verified: false
---
# **Rainbow-DQN (with uniform sampling)** Agent playing **LunarLander-v3**
This is a trained model of a **Rainbow-DQN (with uniform sampling)** agent playing **LunarLander-v3**.
## Usage
### create the conda env in https://github.com/GeneHit/drl_practice
```bash
conda create -n drl python=3.12
conda activate drl
python -m pip install -r requirements.txt
```
### play with full model
```python
# load the full model
model = load_from_hub(repo_id="winkin119/Rainbow-1d-LunarLander-v3-NoPer", filename="full_model.pt")
# Create the environment.
env = gym.make("LunarLander-v3")
state, _ = env.reset()
action = model.action(state)
...
```
There is also a state dict version of the model, you can check the corresponding definition in the repo.
|