--- env_name: LunarLander-v3 tags: - LunarLander-v3 - rainbow-dqn - reinforcement-learning - custom-implementation - deep-q-learning - pytorch - rainbow - dqn model-index: - name: Rainbow-2d-LunarLander-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v3 type: LunarLander-v3 metrics: - type: mean_reward value: 192.34 +/- 127.62 name: mean_reward verified: false --- # **Rainbow-DQN** Agent playing **LunarLander-v3** This is a trained model of a **Rainbow-DQN** agent playing **LunarLander-v3**. ## Usage ### create the conda env in https://github.com/GeneHit/drl_practice ```bash conda create -n drl python=3.12 conda activate drl python -m pip install -r requirements.txt ``` ### play with full model ```python # load the full model model = load_from_hub(repo_id="winkin119/Rainbow-2d-LunarLander-v3", filename="full_model.pt") # Create the environment. Don't forget to check the necessary wrappers in the env setup. env = gym.make("LunarLander-v3") state, _ = env.reset() action = model.action(state) ... ``` There is also a state dict version of the model, you can check the corresponding definition in the repo.