winninghealth commited on
Commit
ccf731a
ยท
verified ยท
1 Parent(s): d0e61d2

Upload 4 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ WiNGPT-Babel-2-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
37
+ WiNGPT-Babel-2-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ base_model:
7
+ - ModelSpace/GemmaX2-28-2B-Pretrain
8
+ tags:
9
+ - GGUF
10
+ ---
11
+
12
+ # WiNGPT-Babel-2: A Multilingual Translation Language Model
13
+
14
+ [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-WiNGPT--Babel-blue)](https://huggingface.co/collections/winninghealth/wingpt-babel-68463d4b2a28d0d675ff3be9)
15
+ [![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-yellow.svg)](https://opensource.org/licenses/Apache-2.0)
16
+
17
+ > This is the quantization version (llama.cpp) of [WiNGPT-Babel-2](https://huggingface.co/winninghealth/WiNGPT-Babel-2).
18
+ >
19
+ > Example
20
+ >
21
+ > ```shell
22
+ > ./llama-server -m WiNGPT-Babel-2-GGUF/WiNGPT-Babel-2-IQ4_XS.gguf --jinja --chat-template-file WiNGPT-Babel-2-GGUF/WiNGPT-Babel-2.jinja
23
+ > ```
24
+ >
25
+ > - **--jinja**: This flag activates the Jinja2 chat template processor.
26
+ > - **--chat-template-file**: This flag points the server to the required template file that defines the WiNGPT-Babel-2's custom prompt format.
27
+
28
+ WiNGPT-Babel-2 is a language model optimized for multilingual translation tasks. As an iteration of WiNGPT-Babel, it features significant improvements in language coverage, data format handling, and translation accuracy for complex content.
29
+
30
+ The model continues the "Human-in-the-loop" training strategy, iteratively optimizing through the analysis of log data from real-world application scenarios to ensure its effectiveness and reliability in practical use.
31
+
32
+ ## Core Improvements in Version 2.0
33
+
34
+ WiNGPT-Babel-2 introduces the following key technical upgrades over its predecessor:
35
+
36
+ 1. **Expanded Language Support:** Through training with the `wmt24pp` dataset, language support has been extended to **55 languages**, primarily enhancing translation capabilities from English (en) to other target languages (xx).
37
+
38
+ 2. **Enhanced Chinese Translation:** The translation pipeline from other source languages to Chinese (xx โ†’ zh) has been specifically optimized, improving the accuracy and fluency of the results.
39
+
40
+ 3. **Structured Data Translation:** The model can now identify and translate text fields embedded within **structured data (e.g., JSON)** while preserving the original data structure. This feature is suitable for scenarios such as API internationalization and multilingual dataset preprocessing.
41
+
42
+ 4. **Mixed-Content Handling:** Its ability to handle mixed-content text has been improved, enabling more accurate translation of paragraphs containing **mathematical expressions (LaTeX), code snippets, and web markup (HTML/Markdown)**, while preserving the format and integrity of these non-translatable elements.
43
+
44
+ ## Training Methodology
45
+
46
+ The performance improvements in WiNGPT-Babel-2 are attributed to a continuous, data-driven, iterative training process:
47
+
48
+ 1. **Data Collection:** Collecting anonymous, real-world translation task logs from integrated applications (e.g., Immersive Translate, Videolingo).
49
+ 2. **Data Refinement:** Using a reward model for rejection sampling on the collected data, supplemented by manual review, to filter high-quality, high-value samples for constructing new training datasets.
50
+ 3. **Iterative Retraining:** Using the refined data for the model's incremental training, continuously improving its performance in specific domains and scenarios through a cyclical iterative process.
51
+
52
+ ## Technical Specifications
53
+
54
+ * **Base Model:** [GemmaX2-28-2B-Pretrain](https://huggingface.co/ModelSpace/GemmaX2-28-2B-Pretrain)
55
+ * **Primary Training Data:** "Human-in-the-loop" in-house dataset, [WMT24++](https://huggingface.co/datasets/google/wmt24pp) dataset
56
+ * **Maximum Context Length:** 4096 tokens
57
+ * **Chat Capability:** Supports multi-turn dialogue, allowing for contextual follow-up and translation refinement.
58
+
59
+ ## Language Support
60
+
61
+ | Direction | Description | Supported Languages (Partial List) |
62
+ | :---------------------- | :--------------------------------------------------- | :----------------------------------------------------------- |
63
+ | **Core Support** | Highest quality, extensively optimized. | `en โ†” zh` |
64
+ | **Expanded Support** | Supported via `wmt24pp` dataset training. | `en โ†’ 55+ languages`, including: `fr`, `de`, `es`, `ru`, `ar`, `pt`, `ko`, `it`, `nl`, `tr`, `pl`, `sv`... |
65
+ | **Enhanced to Chinese** | Specifically optimized for translation into Chinese. | `xx โ†’ zh` |
66
+
67
+ ## Performance
68
+ <table>
69
+ <thead>
70
+ <tr>
71
+ <th rowspan="2" align="center">Model</th>
72
+ <th colspan="2" align="center">FLORES-200</th>
73
+ </tr>
74
+ <tr>
75
+ <th align="center">xx โ†’ en</th>
76
+ <th align="center">xx โ†’ zh</th>
77
+ </tr>
78
+ </thead>
79
+ <tbody>
80
+ <tr>
81
+ <td align="center">WiNGPT-Babel-AWQ</td>
82
+ <td align="center">33.91</td>
83
+ <td align="center">17.29</td>
84
+ </tr>
85
+ <tr>
86
+ <td align="center">WiNGPT-Babel-2-AWQ</td>
87
+ <td align="center">36.43</td>
88
+ <td align="center">30.74</td>
89
+ </tr>
90
+ </tbody>
91
+ </table>
92
+
93
+ **Note**:
94
+ 1. The evaluation metric is spBLEU, using the FLORES-200 tokenizer.
95
+
96
+ 3. 'xx' represents the 52 source languages from the wmt24pp dataset.
97
+
98
+ ## Usage Guide
99
+
100
+ For optimal inference performance, it is recommended to use frameworks such as `vllm`. The following provides a basic usage example using the Hugging Face `transformers` library.
101
+
102
+ **System Prompt:** For optimal automatic language inference, it is recommended to use the unified system prompt: `Translate this to {{to}} Language`. Replace `{{to}}` with the name of the target language. For instance, use `Translate this to Simplified Chinese Language` to translate into Chinese, or `Translate this to English Language` to translate into English. This method provides precise control over the translation direction and yields the most reliable results.
103
+
104
+ ### Example
105
+
106
+ ```python
107
+ from transformers import AutoModelForCausalLM, AutoTokenizer
108
+
109
+ model_name = "winninghealth/WiNGPT-Babel-2-AWQ"
110
+
111
+ model = AutoModelForCausalLM.from_pretrained(
112
+ model_name,
113
+ torch_dtype="auto",
114
+ device_map="auto"
115
+ )
116
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
117
+
118
+ # Example: Translation of text within a JSON object to Chinese
119
+ prompt_json = """{
120
+ "product_name": "High-Performance Laptop",
121
+ "features": ["Fast Processor", "Long Battery Life", "Lightweight Design"]
122
+ }"""
123
+
124
+ messages = [
125
+ {"role": "system", "content": "Translate this to Simplified Chinese Language"},
126
+ {"role": "user", "content": prompt_json} # Replace with the desired prompt
127
+ ]
128
+
129
+ text = tokenizer.apply_chat_template(
130
+ messages,
131
+ tokenize=False,
132
+ add_generation_prompt=True
133
+ )
134
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
135
+
136
+ generated_ids = model.generate(
137
+ **model_inputs,
138
+ max_new_tokens=4096,
139
+ temperature=0
140
+ )
141
+
142
+ generated_ids = [
143
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
144
+ ]
145
+
146
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
147
+ ```
148
+
149
+ For additional usage demos, you can refer to the original [WiNGPT-Babel](https://huggingface.co/winninghealth/WiNGPT-Babel#%F0%9F%8E%AC-%E7%A4%BA%E4%BE%8B).
150
+
151
+ ## LICENSE
152
+
153
+ 1. This project's license agreement is the Apache License 2.0
154
+
155
+ 2. Please cite this project when using its model weights: https://huggingface.co/winninghealth/WiNGPT-Babel-2
156
+
157
+ 3. Comply with [gemma-2-2b](https://huggingface.co/google/gemma-2-2b), [GemmaX2-28-2B-v0.1](https://huggingface.co/ModelSpace/GemmaX2-28-2B-v0.1), [immersive-translate](https://github.com/immersive-translate/immersive-translate), [VideoLingo](https://github.com/immersive-translate/immersive-translate) protocols and licenses, details on their website.
158
+
159
+
160
+ ## Contact Us
161
+
162
+ - Apply for a token through the WiNGPT platform
163
+ - Or contact us at [email protected] to request a free trial API_KEY
WiNGPT-Babel-2-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ceeafcf74420ac65e8c0563ffb72bf226b6664ac57be3c5866e4f30c2352a96f
3
+ size 1566250368
WiNGPT-Babel-2-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9072d7f0e36296acd44437eea10d7115f935e90672229d92c788841d64e9e02
3
+ size 2784494752
WiNGPT-Babel-2.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {% for message in messages %}{% if not loop.first %}{{- '\n' }}{% endif %}{{- '<start_of_turn>' + message['role'] + '\n' + message['content'] + '<eos>' }}{% if loop.last and add_generation_prompt %}{{- '\n<start_of_turn>assistant\n' }}{% endif %}{% endfor %}