Upload 4 files
Browse files- .gitattributes +2 -0
- README.md +163 -0
- WiNGPT-Babel-2-IQ4_XS.gguf +3 -0
- WiNGPT-Babel-2-Q8_0.gguf +3 -0
- WiNGPT-Babel-2.jinja +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
WiNGPT-Babel-2-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
WiNGPT-Babel-2-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
base_model:
|
7 |
+
- ModelSpace/GemmaX2-28-2B-Pretrain
|
8 |
+
tags:
|
9 |
+
- GGUF
|
10 |
+
---
|
11 |
+
|
12 |
+
# WiNGPT-Babel-2: A Multilingual Translation Language Model
|
13 |
+
|
14 |
+
[](https://huggingface.co/collections/winninghealth/wingpt-babel-68463d4b2a28d0d675ff3be9)
|
15 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
16 |
+
|
17 |
+
> This is the quantization version (llama.cpp) of [WiNGPT-Babel-2](https://huggingface.co/winninghealth/WiNGPT-Babel-2).
|
18 |
+
>
|
19 |
+
> Example
|
20 |
+
>
|
21 |
+
> ```shell
|
22 |
+
> ./llama-server -m WiNGPT-Babel-2-GGUF/WiNGPT-Babel-2-IQ4_XS.gguf --jinja --chat-template-file WiNGPT-Babel-2-GGUF/WiNGPT-Babel-2.jinja
|
23 |
+
> ```
|
24 |
+
>
|
25 |
+
> - **--jinja**: This flag activates the Jinja2 chat template processor.
|
26 |
+
> - **--chat-template-file**: This flag points the server to the required template file that defines the WiNGPT-Babel-2's custom prompt format.
|
27 |
+
|
28 |
+
WiNGPT-Babel-2 is a language model optimized for multilingual translation tasks. As an iteration of WiNGPT-Babel, it features significant improvements in language coverage, data format handling, and translation accuracy for complex content.
|
29 |
+
|
30 |
+
The model continues the "Human-in-the-loop" training strategy, iteratively optimizing through the analysis of log data from real-world application scenarios to ensure its effectiveness and reliability in practical use.
|
31 |
+
|
32 |
+
## Core Improvements in Version 2.0
|
33 |
+
|
34 |
+
WiNGPT-Babel-2 introduces the following key technical upgrades over its predecessor:
|
35 |
+
|
36 |
+
1. **Expanded Language Support:** Through training with the `wmt24pp` dataset, language support has been extended to **55 languages**, primarily enhancing translation capabilities from English (en) to other target languages (xx).
|
37 |
+
|
38 |
+
2. **Enhanced Chinese Translation:** The translation pipeline from other source languages to Chinese (xx โ zh) has been specifically optimized, improving the accuracy and fluency of the results.
|
39 |
+
|
40 |
+
3. **Structured Data Translation:** The model can now identify and translate text fields embedded within **structured data (e.g., JSON)** while preserving the original data structure. This feature is suitable for scenarios such as API internationalization and multilingual dataset preprocessing.
|
41 |
+
|
42 |
+
4. **Mixed-Content Handling:** Its ability to handle mixed-content text has been improved, enabling more accurate translation of paragraphs containing **mathematical expressions (LaTeX), code snippets, and web markup (HTML/Markdown)**, while preserving the format and integrity of these non-translatable elements.
|
43 |
+
|
44 |
+
## Training Methodology
|
45 |
+
|
46 |
+
The performance improvements in WiNGPT-Babel-2 are attributed to a continuous, data-driven, iterative training process:
|
47 |
+
|
48 |
+
1. **Data Collection:** Collecting anonymous, real-world translation task logs from integrated applications (e.g., Immersive Translate, Videolingo).
|
49 |
+
2. **Data Refinement:** Using a reward model for rejection sampling on the collected data, supplemented by manual review, to filter high-quality, high-value samples for constructing new training datasets.
|
50 |
+
3. **Iterative Retraining:** Using the refined data for the model's incremental training, continuously improving its performance in specific domains and scenarios through a cyclical iterative process.
|
51 |
+
|
52 |
+
## Technical Specifications
|
53 |
+
|
54 |
+
* **Base Model:** [GemmaX2-28-2B-Pretrain](https://huggingface.co/ModelSpace/GemmaX2-28-2B-Pretrain)
|
55 |
+
* **Primary Training Data:** "Human-in-the-loop" in-house dataset, [WMT24++](https://huggingface.co/datasets/google/wmt24pp) dataset
|
56 |
+
* **Maximum Context Length:** 4096 tokens
|
57 |
+
* **Chat Capability:** Supports multi-turn dialogue, allowing for contextual follow-up and translation refinement.
|
58 |
+
|
59 |
+
## Language Support
|
60 |
+
|
61 |
+
| Direction | Description | Supported Languages (Partial List) |
|
62 |
+
| :---------------------- | :--------------------------------------------------- | :----------------------------------------------------------- |
|
63 |
+
| **Core Support** | Highest quality, extensively optimized. | `en โ zh` |
|
64 |
+
| **Expanded Support** | Supported via `wmt24pp` dataset training. | `en โ 55+ languages`, including: `fr`, `de`, `es`, `ru`, `ar`, `pt`, `ko`, `it`, `nl`, `tr`, `pl`, `sv`... |
|
65 |
+
| **Enhanced to Chinese** | Specifically optimized for translation into Chinese. | `xx โ zh` |
|
66 |
+
|
67 |
+
## Performance
|
68 |
+
<table>
|
69 |
+
<thead>
|
70 |
+
<tr>
|
71 |
+
<th rowspan="2" align="center">Model</th>
|
72 |
+
<th colspan="2" align="center">FLORES-200</th>
|
73 |
+
</tr>
|
74 |
+
<tr>
|
75 |
+
<th align="center">xx โ en</th>
|
76 |
+
<th align="center">xx โ zh</th>
|
77 |
+
</tr>
|
78 |
+
</thead>
|
79 |
+
<tbody>
|
80 |
+
<tr>
|
81 |
+
<td align="center">WiNGPT-Babel-AWQ</td>
|
82 |
+
<td align="center">33.91</td>
|
83 |
+
<td align="center">17.29</td>
|
84 |
+
</tr>
|
85 |
+
<tr>
|
86 |
+
<td align="center">WiNGPT-Babel-2-AWQ</td>
|
87 |
+
<td align="center">36.43</td>
|
88 |
+
<td align="center">30.74</td>
|
89 |
+
</tr>
|
90 |
+
</tbody>
|
91 |
+
</table>
|
92 |
+
|
93 |
+
**Note**:
|
94 |
+
1. The evaluation metric is spBLEU, using the FLORES-200 tokenizer.
|
95 |
+
|
96 |
+
3. 'xx' represents the 52 source languages from the wmt24pp dataset.
|
97 |
+
|
98 |
+
## Usage Guide
|
99 |
+
|
100 |
+
For optimal inference performance, it is recommended to use frameworks such as `vllm`. The following provides a basic usage example using the Hugging Face `transformers` library.
|
101 |
+
|
102 |
+
**System Prompt:** For optimal automatic language inference, it is recommended to use the unified system prompt: `Translate this to {{to}} Language`. Replace `{{to}}` with the name of the target language. For instance, use `Translate this to Simplified Chinese Language` to translate into Chinese, or `Translate this to English Language` to translate into English. This method provides precise control over the translation direction and yields the most reliable results.
|
103 |
+
|
104 |
+
### Example
|
105 |
+
|
106 |
+
```python
|
107 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
108 |
+
|
109 |
+
model_name = "winninghealth/WiNGPT-Babel-2-AWQ"
|
110 |
+
|
111 |
+
model = AutoModelForCausalLM.from_pretrained(
|
112 |
+
model_name,
|
113 |
+
torch_dtype="auto",
|
114 |
+
device_map="auto"
|
115 |
+
)
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
117 |
+
|
118 |
+
# Example: Translation of text within a JSON object to Chinese
|
119 |
+
prompt_json = """{
|
120 |
+
"product_name": "High-Performance Laptop",
|
121 |
+
"features": ["Fast Processor", "Long Battery Life", "Lightweight Design"]
|
122 |
+
}"""
|
123 |
+
|
124 |
+
messages = [
|
125 |
+
{"role": "system", "content": "Translate this to Simplified Chinese Language"},
|
126 |
+
{"role": "user", "content": prompt_json} # Replace with the desired prompt
|
127 |
+
]
|
128 |
+
|
129 |
+
text = tokenizer.apply_chat_template(
|
130 |
+
messages,
|
131 |
+
tokenize=False,
|
132 |
+
add_generation_prompt=True
|
133 |
+
)
|
134 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
135 |
+
|
136 |
+
generated_ids = model.generate(
|
137 |
+
**model_inputs,
|
138 |
+
max_new_tokens=4096,
|
139 |
+
temperature=0
|
140 |
+
)
|
141 |
+
|
142 |
+
generated_ids = [
|
143 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
144 |
+
]
|
145 |
+
|
146 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
147 |
+
```
|
148 |
+
|
149 |
+
For additional usage demos, you can refer to the original [WiNGPT-Babel](https://huggingface.co/winninghealth/WiNGPT-Babel#%F0%9F%8E%AC-%E7%A4%BA%E4%BE%8B).
|
150 |
+
|
151 |
+
## LICENSE
|
152 |
+
|
153 |
+
1. This project's license agreement is the Apache License 2.0
|
154 |
+
|
155 |
+
2. Please cite this project when using its model weights: https://huggingface.co/winninghealth/WiNGPT-Babel-2
|
156 |
+
|
157 |
+
3. Comply with [gemma-2-2b](https://huggingface.co/google/gemma-2-2b), [GemmaX2-28-2B-v0.1](https://huggingface.co/ModelSpace/GemmaX2-28-2B-v0.1), [immersive-translate](https://github.com/immersive-translate/immersive-translate), [VideoLingo](https://github.com/immersive-translate/immersive-translate) protocols and licenses, details on their website.
|
158 |
+
|
159 |
+
|
160 |
+
## Contact Us
|
161 |
+
|
162 |
+
- Apply for a token through the WiNGPT platform
|
163 |
+
- Or contact us at [email protected] to request a free trial API_KEY
|
WiNGPT-Babel-2-IQ4_XS.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ceeafcf74420ac65e8c0563ffb72bf226b6664ac57be3c5866e4f30c2352a96f
|
3 |
+
size 1566250368
|
WiNGPT-Babel-2-Q8_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9072d7f0e36296acd44437eea10d7115f935e90672229d92c788841d64e9e02
|
3 |
+
size 2784494752
|
WiNGPT-Babel-2.jinja
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{% for message in messages %}{% if not loop.first %}{{- '\n' }}{% endif %}{{- '<start_of_turn>' + message['role'] + '\n' + message['content'] + '<eos>' }}{% if loop.last and add_generation_prompt %}{{- '\n<start_of_turn>assistant\n' }}{% endif %}{% endfor %}
|