--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # model_jeff This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("wongzien2000/model_jeff") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 26 * Number of training documents: 36727
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | jeff - just - great - love - thank | 256 | -1_jeff_just_great_love | | 0 | protein - fat - weight - eat - calories | 8978 | 0_protein_fat_weight_eat | | 1 | sets - reps - exercise - week - sets reps | 9577 | 1_sets_reps_exercise_week | | 2 | content - great - thank - science - informative | 5017 | 2_content_great_thank_science | | 3 | breaking bad - breaking - bad - better - better breaking | 1473 | 3_breaking bad_breaking_bad_better | | 4 | level - ready - ready level - level ready - level level | 1425 | 4_level_ready_ready level_level ready | | 5 | bench - press - chest - bench press - grip | 1234 | 5_bench_press_chest_bench press | | 6 | thank - great - man - amazing - thanks | 951 | 6_thank_great_man_amazing | | 7 | fitness - videos - science - thank - jeff | 818 | 7_fitness_videos_science_thank | | 8 | pro - elite - average - lost - level | 741 | 8_pro_elite_average_lost | | 9 | app - macros - macrofactor - macro - fat | 641 | 9_app_macros_macrofactor_macro | | 10 | jeff - jeff jeff - bro jeff - bro - love jeff | 578 | 10_jeff_jeff jeff_bro jeff_bro | | 11 | videos - love - love videos - youtube - quality | 524 | 11_videos_love_love videos_youtube | | 12 | kiwi - kiwi juice - juice - snort - snorting | 468 | 12_kiwi_kiwi juice_juice_snort | | 13 | steroids - testosterone - steroid - anabolic - use steroids | 440 | 13_steroids_testosterone_steroid_anabolic | | 14 | book - program - bought - books - ordered | 395 | 14_book_program_bought_books | | 15 | roids - women - habits - atomic - atomic habits | 393 | 15_roids_women_habits_atomic | | 16 | tall - short - look - height - dude | 382 | 16_tall_short_look_height | | 17 | mask - wearing - wearing mask - hoodie - shirt | 340 | 17_mask_wearing_wearing mask_hoodie | | 18 | shapiro - ben - ben shapiro - jacked - nerd | 336 | 18_shapiro_ben_ben shapiro_jacked | | 19 | mom - chili - macros - recipe - plastic | 314 | 19_mom_chili_macros_recipe | | 20 | jeff - thanks jeff - thanks - thank jeff - thank | 308 | 20_jeff_thanks jeff_thanks_thank jeff | | 21 | sleep - hours - sleeping - work - job | 301 | 21_sleep_hours_sleeping_work | | 22 | steph - bro steph - ber - bro - ber ber | 288 | 22_steph_bro steph_ber_bro | | 23 | voice - sound - match - voice doesn - sounds | 282 | 23_voice_sound_match_voice doesn | | 24 | thumbnail - picture - look - pic - photo | 267 | 24_thumbnail_picture_look_pic |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: True * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 2.0.2 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.2 * Scikit-Learn: 1.6.1 * Sentence-transformers: 3.4.1 * Transformers: 4.50.2 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.11.11