--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # wolf_topic_model_repKB This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("wongzien2000/wolf_topic_model_repKB") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 4 * Number of training documents: 2933
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | myoadapt app - myoadapt launch - myoadapt coming - myoadapt - myoadapt compare | 99 | -1_myoadapt app_myoadapt launch_myoadapt coming_myoadapt | | 0 | deadlifts - deadlift - pull ups - exercises - lateral raises | 116 | 0_deadlifts_deadlift_pull ups_exercises | | 1 | squats - squats gym - sissy squats - pistol squats - squat | 2512 | 1_squats_squats gym_sissy squats_pistol squats | | 2 | calf raises - calf raise - protein intake - seated calf - lean mass | 206 | 2_calf raises_calf raise_protein intake_seated calf |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 5 * verbose: True * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 2.0.2 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.2 * Scikit-Learn: 1.6.1 * Sentence-transformers: 3.4.1 * Transformers: 4.50.2 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.11.11