Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1748171378.8e9b4f0c3602 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000724_2965504_reward_5.979.pth +3 -0
- checkpoint_p0/checkpoint_000000758_3104768.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +686 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1748171378.8e9b4f0c3602
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f84bbc695393995da8dd444d30ab264446d53d15f3627d81205c8e59198e422
|
3 |
+
size 417263
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 4.01 +/- 0.49
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r wowthecoder/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000724_2965504_reward_5.979.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbda5e1a44ce0ae59e7337e47e1f96a1ba680023ddb6ccbd7d075505b529b2ef
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000758_3104768.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91acde48340597d72b5932052d404dcb52d71c6c6909a96200e5970629b910f2
|
3 |
+
size 34929541
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:377f92a2846ba91b553d71c83e4e6154589070b5d787290a69408979f7112e16
|
3 |
+
size 34929541
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/kaggle/working/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ad9449019606121a5467fb1ff155f36ae329300f095d7a51691cfee599e679f
|
3 |
+
size 3607013
|
sf_log.txt
ADDED
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2025-05-25 11:09:42,915][00035] Saving configuration to /kaggle/working/train_dir/default_experiment/config.json...
|
2 |
+
[2025-05-25 11:09:42,917][00035] Rollout worker 0 uses device cpu
|
3 |
+
[2025-05-25 11:09:42,917][00035] Rollout worker 1 uses device cpu
|
4 |
+
[2025-05-25 11:09:42,918][00035] Rollout worker 2 uses device cpu
|
5 |
+
[2025-05-25 11:09:42,919][00035] Rollout worker 3 uses device cpu
|
6 |
+
[2025-05-25 11:09:42,920][00035] Rollout worker 4 uses device cpu
|
7 |
+
[2025-05-25 11:09:42,921][00035] Rollout worker 5 uses device cpu
|
8 |
+
[2025-05-25 11:09:42,921][00035] Rollout worker 6 uses device cpu
|
9 |
+
[2025-05-25 11:09:42,922][00035] Rollout worker 7 uses device cpu
|
10 |
+
[2025-05-25 11:09:43,047][00035] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2025-05-25 11:09:43,048][00035] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2025-05-25 11:09:43,092][00035] Starting all processes...
|
13 |
+
[2025-05-25 11:09:43,092][00035] Starting process learner_proc0
|
14 |
+
[2025-05-25 11:09:43,184][00035] Starting all processes...
|
15 |
+
[2025-05-25 11:09:43,195][00035] Starting process inference_proc0-0
|
16 |
+
[2025-05-25 11:09:43,195][00035] Starting process rollout_proc0
|
17 |
+
[2025-05-25 11:09:43,195][00035] Starting process rollout_proc1
|
18 |
+
[2025-05-25 11:09:43,196][00035] Starting process rollout_proc2
|
19 |
+
[2025-05-25 11:09:43,197][00035] Starting process rollout_proc3
|
20 |
+
[2025-05-25 11:09:43,197][00035] Starting process rollout_proc4
|
21 |
+
[2025-05-25 11:09:43,197][00035] Starting process rollout_proc5
|
22 |
+
[2025-05-25 11:09:43,198][00035] Starting process rollout_proc6
|
23 |
+
[2025-05-25 11:09:43,199][00035] Starting process rollout_proc7
|
24 |
+
[2025-05-25 11:09:50,891][01047] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
25 |
+
[2025-05-25 11:09:50,891][01047] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
26 |
+
[2025-05-25 11:09:50,957][01047] Num visible devices: 1
|
27 |
+
[2025-05-25 11:09:50,964][01047] Starting seed is not provided
|
28 |
+
[2025-05-25 11:09:50,965][01047] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
29 |
+
[2025-05-25 11:09:50,965][01047] Initializing actor-critic model on device cuda:0
|
30 |
+
[2025-05-25 11:09:50,966][01047] RunningMeanStd input shape: (3, 72, 128)
|
31 |
+
[2025-05-25 11:09:50,972][01047] RunningMeanStd input shape: (1,)
|
32 |
+
[2025-05-25 11:09:51,032][01047] ConvEncoder: input_channels=3
|
33 |
+
[2025-05-25 11:09:51,371][01061] Worker 2 uses CPU cores [2]
|
34 |
+
[2025-05-25 11:09:51,651][01060] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
35 |
+
[2025-05-25 11:09:51,652][01060] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
36 |
+
[2025-05-25 11:09:51,669][01047] Conv encoder output size: 512
|
37 |
+
[2025-05-25 11:09:51,670][01047] Policy head output size: 512
|
38 |
+
[2025-05-25 11:09:51,723][01060] Num visible devices: 1
|
39 |
+
[2025-05-25 11:09:51,826][01068] Worker 6 uses CPU cores [2]
|
40 |
+
[2025-05-25 11:09:51,837][01047] Created Actor Critic model with architecture:
|
41 |
+
[2025-05-25 11:09:51,837][01047] ActorCriticSharedWeights(
|
42 |
+
(obs_normalizer): ObservationNormalizer(
|
43 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
44 |
+
(running_mean_std): ModuleDict(
|
45 |
+
(obs): RunningMeanStdInPlace()
|
46 |
+
)
|
47 |
+
)
|
48 |
+
)
|
49 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
50 |
+
(encoder): VizdoomEncoder(
|
51 |
+
(basic_encoder): ConvEncoder(
|
52 |
+
(enc): RecursiveScriptModule(
|
53 |
+
original_name=ConvEncoderImpl
|
54 |
+
(conv_head): RecursiveScriptModule(
|
55 |
+
original_name=Sequential
|
56 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
57 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
58 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
59 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
60 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
61 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
62 |
+
)
|
63 |
+
(mlp_layers): RecursiveScriptModule(
|
64 |
+
original_name=Sequential
|
65 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
66 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
67 |
+
)
|
68 |
+
)
|
69 |
+
)
|
70 |
+
)
|
71 |
+
(core): ModelCoreRNN(
|
72 |
+
(core): GRU(512, 512)
|
73 |
+
)
|
74 |
+
(decoder): MlpDecoder(
|
75 |
+
(mlp): Identity()
|
76 |
+
)
|
77 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
78 |
+
(action_parameterization): ActionParameterizationDefault(
|
79 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
80 |
+
)
|
81 |
+
)
|
82 |
+
[2025-05-25 11:09:51,839][01067] Worker 7 uses CPU cores [3]
|
83 |
+
[2025-05-25 11:09:51,850][01066] Worker 5 uses CPU cores [1]
|
84 |
+
[2025-05-25 11:09:51,850][01063] Worker 0 uses CPU cores [0]
|
85 |
+
[2025-05-25 11:09:51,868][01064] Worker 4 uses CPU cores [0]
|
86 |
+
[2025-05-25 11:09:51,926][01065] Worker 3 uses CPU cores [3]
|
87 |
+
[2025-05-25 11:09:51,948][01062] Worker 1 uses CPU cores [1]
|
88 |
+
[2025-05-25 11:09:52,115][01047] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2025-05-25 11:09:54,770][01047] No checkpoints found
|
90 |
+
[2025-05-25 11:09:54,770][01047] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2025-05-25 11:09:54,770][01047] Initialized policy 0 weights for model version 0
|
92 |
+
[2025-05-25 11:09:54,772][01047] LearnerWorker_p0 finished initialization!
|
93 |
+
[2025-05-25 11:09:54,773][01047] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2025-05-25 11:09:54,891][01060] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2025-05-25 11:09:54,892][01060] RunningMeanStd input shape: (1,)
|
96 |
+
[2025-05-25 11:09:54,903][01060] ConvEncoder: input_channels=3
|
97 |
+
[2025-05-25 11:09:55,016][01060] Conv encoder output size: 512
|
98 |
+
[2025-05-25 11:09:55,017][01060] Policy head output size: 512
|
99 |
+
[2025-05-25 11:09:55,074][00035] Inference worker 0-0 is ready!
|
100 |
+
[2025-05-25 11:09:55,075][00035] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2025-05-25 11:09:55,197][01061] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2025-05-25 11:09:55,199][01064] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2025-05-25 11:09:55,200][01068] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2025-05-25 11:09:55,199][01065] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2025-05-25 11:09:55,200][01063] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2025-05-25 11:09:55,202][01066] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2025-05-25 11:09:55,203][01067] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2025-05-25 11:09:55,204][01062] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2025-05-25 11:09:55,805][01065] Decorrelating experience for 0 frames...
|
110 |
+
[2025-05-25 11:09:55,805][01061] Decorrelating experience for 0 frames...
|
111 |
+
[2025-05-25 11:09:55,805][01063] Decorrelating experience for 0 frames...
|
112 |
+
[2025-05-25 11:09:56,078][01061] Decorrelating experience for 32 frames...
|
113 |
+
[2025-05-25 11:09:56,186][01062] Decorrelating experience for 0 frames...
|
114 |
+
[2025-05-25 11:09:56,183][01066] Decorrelating experience for 0 frames...
|
115 |
+
[2025-05-25 11:09:56,255][01065] Decorrelating experience for 32 frames...
|
116 |
+
[2025-05-25 11:09:56,493][01061] Decorrelating experience for 64 frames...
|
117 |
+
[2025-05-25 11:09:56,744][01064] Decorrelating experience for 0 frames...
|
118 |
+
[2025-05-25 11:09:56,796][01062] Decorrelating experience for 32 frames...
|
119 |
+
[2025-05-25 11:09:56,795][01066] Decorrelating experience for 32 frames...
|
120 |
+
[2025-05-25 11:09:56,984][01061] Decorrelating experience for 96 frames...
|
121 |
+
[2025-05-25 11:09:57,301][01065] Decorrelating experience for 64 frames...
|
122 |
+
[2025-05-25 11:09:57,553][01064] Decorrelating experience for 32 frames...
|
123 |
+
[2025-05-25 11:09:57,673][01063] Decorrelating experience for 32 frames...
|
124 |
+
[2025-05-25 11:09:57,833][01066] Decorrelating experience for 64 frames...
|
125 |
+
[2025-05-25 11:09:57,836][01062] Decorrelating experience for 64 frames...
|
126 |
+
[2025-05-25 11:09:58,315][01067] Decorrelating experience for 0 frames...
|
127 |
+
[2025-05-25 11:09:58,325][00035] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 60. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
128 |
+
[2025-05-25 11:09:58,327][00035] Avg episode reward: [(0, '1.280')]
|
129 |
+
[2025-05-25 11:09:58,403][01062] Decorrelating experience for 96 frames...
|
130 |
+
[2025-05-25 11:09:58,487][01065] Decorrelating experience for 96 frames...
|
131 |
+
[2025-05-25 11:09:58,645][01064] Decorrelating experience for 64 frames...
|
132 |
+
[2025-05-25 11:09:58,761][01063] Decorrelating experience for 64 frames...
|
133 |
+
[2025-05-25 11:09:59,169][01067] Decorrelating experience for 32 frames...
|
134 |
+
[2025-05-25 11:09:59,194][01068] Decorrelating experience for 0 frames...
|
135 |
+
[2025-05-25 11:09:59,245][01064] Decorrelating experience for 96 frames...
|
136 |
+
[2025-05-25 11:10:00,207][01068] Decorrelating experience for 32 frames...
|
137 |
+
[2025-05-25 11:10:00,235][01066] Decorrelating experience for 96 frames...
|
138 |
+
[2025-05-25 11:10:00,298][01067] Decorrelating experience for 64 frames...
|
139 |
+
[2025-05-25 11:10:00,661][01047] Signal inference workers to stop experience collection...
|
140 |
+
[2025-05-25 11:10:00,669][01060] InferenceWorker_p0-w0: stopping experience collection
|
141 |
+
[2025-05-25 11:10:00,926][01067] Decorrelating experience for 96 frames...
|
142 |
+
[2025-05-25 11:10:01,019][01068] Decorrelating experience for 64 frames...
|
143 |
+
[2025-05-25 11:10:01,062][01063] Decorrelating experience for 96 frames...
|
144 |
+
[2025-05-25 11:10:01,385][01068] Decorrelating experience for 96 frames...
|
145 |
+
[2025-05-25 11:10:02,639][01047] Signal inference workers to resume experience collection...
|
146 |
+
[2025-05-25 11:10:02,640][01060] InferenceWorker_p0-w0: resuming experience collection
|
147 |
+
[2025-05-25 11:10:03,036][00035] Heartbeat connected on Batcher_0
|
148 |
+
[2025-05-25 11:10:03,041][00035] Heartbeat connected on LearnerWorker_p0
|
149 |
+
[2025-05-25 11:10:03,051][00035] Heartbeat connected on InferenceWorker_p0-w0
|
150 |
+
[2025-05-25 11:10:03,057][00035] Heartbeat connected on RolloutWorker_w0
|
151 |
+
[2025-05-25 11:10:03,067][00035] Heartbeat connected on RolloutWorker_w1
|
152 |
+
[2025-05-25 11:10:03,072][00035] Heartbeat connected on RolloutWorker_w3
|
153 |
+
[2025-05-25 11:10:03,074][00035] Heartbeat connected on RolloutWorker_w2
|
154 |
+
[2025-05-25 11:10:03,076][00035] Heartbeat connected on RolloutWorker_w4
|
155 |
+
[2025-05-25 11:10:03,081][00035] Heartbeat connected on RolloutWorker_w5
|
156 |
+
[2025-05-25 11:10:03,086][00035] Heartbeat connected on RolloutWorker_w6
|
157 |
+
[2025-05-25 11:10:03,104][00035] Heartbeat connected on RolloutWorker_w7
|
158 |
+
[2025-05-25 11:10:03,325][00035] Fps is (10 sec: 1638.4, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 8192. Throughput: 0: 452.4. Samples: 2322. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
|
159 |
+
[2025-05-25 11:10:03,327][00035] Avg episode reward: [(0, '3.049')]
|
160 |
+
[2025-05-25 11:10:07,426][01060] Updated weights for policy 0, policy_version 10 (0.0100)
|
161 |
+
[2025-05-25 11:10:08,325][00035] Fps is (10 sec: 4505.6, 60 sec: 4505.6, 300 sec: 4505.6). Total num frames: 45056. Throughput: 0: 1020.2. Samples: 10262. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
162 |
+
[2025-05-25 11:10:08,326][00035] Avg episode reward: [(0, '4.305')]
|
163 |
+
[2025-05-25 11:10:11,699][01060] Updated weights for policy 0, policy_version 20 (0.0016)
|
164 |
+
[2025-05-25 11:10:13,325][00035] Fps is (10 sec: 8601.6, 60 sec: 6280.5, 300 sec: 6280.5). Total num frames: 94208. Throughput: 0: 1624.4. Samples: 24426. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
165 |
+
[2025-05-25 11:10:13,327][00035] Avg episode reward: [(0, '4.254')]
|
166 |
+
[2025-05-25 11:10:16,062][01060] Updated weights for policy 0, policy_version 30 (0.0019)
|
167 |
+
[2025-05-25 11:10:18,326][00035] Fps is (10 sec: 9829.9, 60 sec: 7167.8, 300 sec: 7167.8). Total num frames: 143360. Throughput: 0: 1569.2. Samples: 31444. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
168 |
+
[2025-05-25 11:10:18,328][00035] Avg episode reward: [(0, '4.510')]
|
169 |
+
[2025-05-25 11:10:18,336][01047] Saving new best policy, reward=4.510!
|
170 |
+
[2025-05-25 11:10:20,320][01060] Updated weights for policy 0, policy_version 40 (0.0017)
|
171 |
+
[2025-05-25 11:10:23,325][00035] Fps is (10 sec: 9830.5, 60 sec: 7700.5, 300 sec: 7700.5). Total num frames: 192512. Throughput: 0: 1828.0. Samples: 45760. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
172 |
+
[2025-05-25 11:10:23,328][00035] Avg episode reward: [(0, '4.294')]
|
173 |
+
[2025-05-25 11:10:24,718][01060] Updated weights for policy 0, policy_version 50 (0.0015)
|
174 |
+
[2025-05-25 11:10:28,325][00035] Fps is (10 sec: 9421.2, 60 sec: 7918.9, 300 sec: 7918.9). Total num frames: 237568. Throughput: 0: 1991.2. Samples: 59796. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
175 |
+
[2025-05-25 11:10:28,326][00035] Avg episode reward: [(0, '4.298')]
|
176 |
+
[2025-05-25 11:10:28,975][01060] Updated weights for policy 0, policy_version 60 (0.0017)
|
177 |
+
[2025-05-25 11:10:33,325][00035] Fps is (10 sec: 9011.2, 60 sec: 8075.0, 300 sec: 8075.0). Total num frames: 282624. Throughput: 0: 1911.6. Samples: 66966. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
178 |
+
[2025-05-25 11:10:33,327][00035] Avg episode reward: [(0, '4.416')]
|
179 |
+
[2025-05-25 11:10:33,391][01060] Updated weights for policy 0, policy_version 70 (0.0015)
|
180 |
+
[2025-05-25 11:10:38,325][00035] Fps is (10 sec: 8601.7, 60 sec: 8089.6, 300 sec: 8089.6). Total num frames: 323584. Throughput: 0: 1988.3. Samples: 79590. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
181 |
+
[2025-05-25 11:10:38,327][00035] Avg episode reward: [(0, '4.345')]
|
182 |
+
[2025-05-25 11:10:38,347][01060] Updated weights for policy 0, policy_version 80 (0.0014)
|
183 |
+
[2025-05-25 11:10:42,635][01060] Updated weights for policy 0, policy_version 90 (0.0014)
|
184 |
+
[2025-05-25 11:10:43,325][00035] Fps is (10 sec: 9011.2, 60 sec: 8283.0, 300 sec: 8283.0). Total num frames: 372736. Throughput: 0: 2085.2. Samples: 93896. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
185 |
+
[2025-05-25 11:10:43,328][00035] Avg episode reward: [(0, '4.276')]
|
186 |
+
[2025-05-25 11:10:46,987][01060] Updated weights for policy 0, policy_version 100 (0.0017)
|
187 |
+
[2025-05-25 11:10:48,325][00035] Fps is (10 sec: 9830.3, 60 sec: 8437.8, 300 sec: 8437.8). Total num frames: 421888. Throughput: 0: 2192.2. Samples: 100970. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
188 |
+
[2025-05-25 11:10:48,327][00035] Avg episode reward: [(0, '4.723')]
|
189 |
+
[2025-05-25 11:10:48,340][01047] Saving new best policy, reward=4.723!
|
190 |
+
[2025-05-25 11:10:51,327][01060] Updated weights for policy 0, policy_version 110 (0.0017)
|
191 |
+
[2025-05-25 11:10:53,326][00035] Fps is (10 sec: 9419.7, 60 sec: 8489.7, 300 sec: 8489.7). Total num frames: 466944. Throughput: 0: 2330.9. Samples: 115154. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
192 |
+
[2025-05-25 11:10:53,328][00035] Avg episode reward: [(0, '4.337')]
|
193 |
+
[2025-05-25 11:10:55,634][01060] Updated weights for policy 0, policy_version 120 (0.0018)
|
194 |
+
[2025-05-25 11:10:58,325][00035] Fps is (10 sec: 9420.8, 60 sec: 8601.6, 300 sec: 8601.6). Total num frames: 516096. Throughput: 0: 2331.9. Samples: 129360. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
195 |
+
[2025-05-25 11:10:58,327][00035] Avg episode reward: [(0, '4.619')]
|
196 |
+
[2025-05-25 11:10:59,914][01060] Updated weights for policy 0, policy_version 130 (0.0019)
|
197 |
+
[2025-05-25 11:11:03,325][00035] Fps is (10 sec: 9421.9, 60 sec: 9216.0, 300 sec: 8633.1). Total num frames: 561152. Throughput: 0: 2334.4. Samples: 136490. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
198 |
+
[2025-05-25 11:11:03,327][00035] Avg episode reward: [(0, '4.545')]
|
199 |
+
[2025-05-25 11:11:04,325][01060] Updated weights for policy 0, policy_version 140 (0.0017)
|
200 |
+
[2025-05-25 11:11:08,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9352.5, 300 sec: 8660.1). Total num frames: 606208. Throughput: 0: 2322.6. Samples: 150278. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
201 |
+
[2025-05-25 11:11:08,329][00035] Avg episode reward: [(0, '4.622')]
|
202 |
+
[2025-05-25 11:11:09,245][01060] Updated weights for policy 0, policy_version 150 (0.0016)
|
203 |
+
[2025-05-25 11:11:13,325][00035] Fps is (10 sec: 9011.3, 60 sec: 9284.3, 300 sec: 8683.5). Total num frames: 651264. Throughput: 0: 2303.1. Samples: 163436. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
204 |
+
[2025-05-25 11:11:13,326][00035] Avg episode reward: [(0, '4.569')]
|
205 |
+
[2025-05-25 11:11:13,604][01060] Updated weights for policy 0, policy_version 160 (0.0016)
|
206 |
+
[2025-05-25 11:11:17,920][01060] Updated weights for policy 0, policy_version 170 (0.0016)
|
207 |
+
[2025-05-25 11:11:18,326][00035] Fps is (10 sec: 9010.2, 60 sec: 9215.9, 300 sec: 8703.9). Total num frames: 696320. Throughput: 0: 2298.6. Samples: 170404. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
208 |
+
[2025-05-25 11:11:18,327][00035] Avg episode reward: [(0, '4.691')]
|
209 |
+
[2025-05-25 11:11:22,236][01060] Updated weights for policy 0, policy_version 180 (0.0014)
|
210 |
+
[2025-05-25 11:11:23,325][00035] Fps is (10 sec: 9420.7, 60 sec: 9216.0, 300 sec: 8770.3). Total num frames: 745472. Throughput: 0: 2336.2. Samples: 184720. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
211 |
+
[2025-05-25 11:11:23,327][00035] Avg episode reward: [(0, '4.675')]
|
212 |
+
[2025-05-25 11:11:26,530][01060] Updated weights for policy 0, policy_version 190 (0.0015)
|
213 |
+
[2025-05-25 11:11:28,325][00035] Fps is (10 sec: 9831.5, 60 sec: 9284.3, 300 sec: 8829.2). Total num frames: 794624. Throughput: 0: 2336.0. Samples: 199014. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
214 |
+
[2025-05-25 11:11:28,327][00035] Avg episode reward: [(0, '4.634')]
|
215 |
+
[2025-05-25 11:11:30,816][01060] Updated weights for policy 0, policy_version 200 (0.0015)
|
216 |
+
[2025-05-25 11:11:33,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 8838.7). Total num frames: 839680. Throughput: 0: 2336.2. Samples: 206098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
217 |
+
[2025-05-25 11:11:33,329][00035] Avg episode reward: [(0, '4.466')]
|
218 |
+
[2025-05-25 11:11:35,222][01060] Updated weights for policy 0, policy_version 210 (0.0017)
|
219 |
+
[2025-05-25 11:11:38,325][00035] Fps is (10 sec: 9420.7, 60 sec: 9420.8, 300 sec: 8888.3). Total num frames: 888832. Throughput: 0: 2332.1. Samples: 220098. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
220 |
+
[2025-05-25 11:11:38,327][00035] Avg episode reward: [(0, '4.307')]
|
221 |
+
[2025-05-25 11:11:38,338][01047] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000217_888832.pth...
|
222 |
+
[2025-05-25 11:11:39,629][01060] Updated weights for policy 0, policy_version 220 (0.0014)
|
223 |
+
[2025-05-25 11:11:43,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 8855.2). Total num frames: 929792. Throughput: 0: 2298.3. Samples: 232782. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
224 |
+
[2025-05-25 11:11:43,327][00035] Avg episode reward: [(0, '4.415')]
|
225 |
+
[2025-05-25 11:11:44,595][01060] Updated weights for policy 0, policy_version 230 (0.0014)
|
226 |
+
[2025-05-25 11:11:48,325][00035] Fps is (10 sec: 8601.6, 60 sec: 9216.0, 300 sec: 8862.3). Total num frames: 974848. Throughput: 0: 2295.1. Samples: 239770. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
227 |
+
[2025-05-25 11:11:48,326][00035] Avg episode reward: [(0, '4.504')]
|
228 |
+
[2025-05-25 11:11:48,853][01060] Updated weights for policy 0, policy_version 240 (0.0015)
|
229 |
+
[2025-05-25 11:11:53,236][01060] Updated weights for policy 0, policy_version 250 (0.0017)
|
230 |
+
[2025-05-25 11:11:53,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.4, 300 sec: 8904.4). Total num frames: 1024000. Throughput: 0: 2307.2. Samples: 254104. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
231 |
+
[2025-05-25 11:11:53,327][00035] Avg episode reward: [(0, '4.490')]
|
232 |
+
[2025-05-25 11:11:57,483][01060] Updated weights for policy 0, policy_version 260 (0.0017)
|
233 |
+
[2025-05-25 11:11:58,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 8908.8). Total num frames: 1069056. Throughput: 0: 2331.1. Samples: 268338. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
234 |
+
[2025-05-25 11:11:58,327][00035] Avg episode reward: [(0, '4.684')]
|
235 |
+
[2025-05-25 11:12:01,749][01060] Updated weights for policy 0, policy_version 270 (0.0016)
|
236 |
+
[2025-05-25 11:12:03,325][00035] Fps is (10 sec: 9420.9, 60 sec: 9284.3, 300 sec: 8945.7). Total num frames: 1118208. Throughput: 0: 2336.9. Samples: 275562. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
237 |
+
[2025-05-25 11:12:03,326][00035] Avg episode reward: [(0, '4.461')]
|
238 |
+
[2025-05-25 11:12:06,045][01060] Updated weights for policy 0, policy_version 280 (0.0020)
|
239 |
+
[2025-05-25 11:12:08,325][00035] Fps is (10 sec: 9830.4, 60 sec: 9352.5, 300 sec: 8979.7). Total num frames: 1167360. Throughput: 0: 2335.9. Samples: 289836. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
240 |
+
[2025-05-25 11:12:08,326][00035] Avg episode reward: [(0, '4.818')]
|
241 |
+
[2025-05-25 11:12:08,338][01047] Saving new best policy, reward=4.818!
|
242 |
+
[2025-05-25 11:12:10,364][01060] Updated weights for policy 0, policy_version 290 (0.0017)
|
243 |
+
[2025-05-25 11:12:13,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9352.5, 300 sec: 8980.9). Total num frames: 1212416. Throughput: 0: 2317.7. Samples: 303310. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
244 |
+
[2025-05-25 11:12:13,326][00035] Avg episode reward: [(0, '4.870')]
|
245 |
+
[2025-05-25 11:12:13,331][01047] Saving new best policy, reward=4.870!
|
246 |
+
[2025-05-25 11:12:15,405][01060] Updated weights for policy 0, policy_version 300 (0.0015)
|
247 |
+
[2025-05-25 11:12:18,325][00035] Fps is (10 sec: 8601.6, 60 sec: 9284.4, 300 sec: 8952.7). Total num frames: 1253376. Throughput: 0: 2298.6. Samples: 309534. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
248 |
+
[2025-05-25 11:12:18,328][00035] Avg episode reward: [(0, '4.492')]
|
249 |
+
[2025-05-25 11:12:19,643][01060] Updated weights for policy 0, policy_version 310 (0.0015)
|
250 |
+
[2025-05-25 11:12:23,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 8983.0). Total num frames: 1302528. Throughput: 0: 2308.3. Samples: 323972. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
251 |
+
[2025-05-25 11:12:23,328][00035] Avg episode reward: [(0, '4.823')]
|
252 |
+
[2025-05-25 11:12:24,014][01060] Updated weights for policy 0, policy_version 320 (0.0019)
|
253 |
+
[2025-05-25 11:12:28,326][00035] Fps is (10 sec: 9420.4, 60 sec: 9215.9, 300 sec: 8983.9). Total num frames: 1347584. Throughput: 0: 2337.3. Samples: 337960. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
254 |
+
[2025-05-25 11:12:28,327][00035] Avg episode reward: [(0, '4.739')]
|
255 |
+
[2025-05-25 11:12:28,347][01060] Updated weights for policy 0, policy_version 330 (0.0018)
|
256 |
+
[2025-05-25 11:12:32,703][01060] Updated weights for policy 0, policy_version 340 (0.0017)
|
257 |
+
[2025-05-25 11:12:33,326][00035] Fps is (10 sec: 9420.3, 60 sec: 9284.2, 300 sec: 9011.2). Total num frames: 1396736. Throughput: 0: 2339.3. Samples: 345040. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
258 |
+
[2025-05-25 11:12:33,327][00035] Avg episode reward: [(0, '4.669')]
|
259 |
+
[2025-05-25 11:12:37,103][01060] Updated weights for policy 0, policy_version 350 (0.0014)
|
260 |
+
[2025-05-25 11:12:38,325][00035] Fps is (10 sec: 9421.2, 60 sec: 9216.0, 300 sec: 9011.2). Total num frames: 1441792. Throughput: 0: 2332.7. Samples: 359074. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
261 |
+
[2025-05-25 11:12:38,326][00035] Avg episode reward: [(0, '4.659')]
|
262 |
+
[2025-05-25 11:12:41,364][01060] Updated weights for policy 0, policy_version 360 (0.0018)
|
263 |
+
[2025-05-25 11:12:43,325][00035] Fps is (10 sec: 9421.3, 60 sec: 9352.5, 300 sec: 9036.0). Total num frames: 1490944. Throughput: 0: 2331.3. Samples: 373246. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
264 |
+
[2025-05-25 11:12:43,328][00035] Avg episode reward: [(0, '4.626')]
|
265 |
+
[2025-05-25 11:12:46,160][01060] Updated weights for policy 0, policy_version 370 (0.0017)
|
266 |
+
[2025-05-25 11:12:48,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 9011.2). Total num frames: 1531904. Throughput: 0: 2304.9. Samples: 379282. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
267 |
+
[2025-05-25 11:12:48,327][00035] Avg episode reward: [(0, '4.745')]
|
268 |
+
[2025-05-25 11:12:50,760][01060] Updated weights for policy 0, policy_version 380 (0.0018)
|
269 |
+
[2025-05-25 11:12:53,325][00035] Fps is (10 sec: 8601.6, 60 sec: 9216.0, 300 sec: 9011.2). Total num frames: 1576960. Throughput: 0: 2291.3. Samples: 392946. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
270 |
+
[2025-05-25 11:12:53,327][00035] Avg episode reward: [(0, '4.803')]
|
271 |
+
[2025-05-25 11:12:55,118][01060] Updated weights for policy 0, policy_version 390 (0.0017)
|
272 |
+
[2025-05-25 11:12:58,325][00035] Fps is (10 sec: 9420.7, 60 sec: 9284.3, 300 sec: 9034.0). Total num frames: 1626112. Throughput: 0: 2303.5. Samples: 406966. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
273 |
+
[2025-05-25 11:12:58,327][00035] Avg episode reward: [(0, '4.808')]
|
274 |
+
[2025-05-25 11:12:59,559][01060] Updated weights for policy 0, policy_version 400 (0.0022)
|
275 |
+
[2025-05-25 11:13:03,325][00035] Fps is (10 sec: 9420.6, 60 sec: 9216.0, 300 sec: 9033.3). Total num frames: 1671168. Throughput: 0: 2320.5. Samples: 413958. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
276 |
+
[2025-05-25 11:13:03,327][00035] Avg episode reward: [(0, '4.546')]
|
277 |
+
[2025-05-25 11:13:03,906][01060] Updated weights for policy 0, policy_version 410 (0.0017)
|
278 |
+
[2025-05-25 11:13:08,223][01060] Updated weights for policy 0, policy_version 420 (0.0015)
|
279 |
+
[2025-05-25 11:13:08,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9054.3). Total num frames: 1720320. Throughput: 0: 2311.5. Samples: 427988. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
280 |
+
[2025-05-25 11:13:08,327][00035] Avg episode reward: [(0, '4.971')]
|
281 |
+
[2025-05-25 11:13:08,338][01047] Saving new best policy, reward=4.971!
|
282 |
+
[2025-05-25 11:13:12,572][01060] Updated weights for policy 0, policy_version 430 (0.0018)
|
283 |
+
[2025-05-25 11:13:13,325][00035] Fps is (10 sec: 9421.0, 60 sec: 9216.0, 300 sec: 9053.2). Total num frames: 1765376. Throughput: 0: 2315.3. Samples: 442146. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
284 |
+
[2025-05-25 11:13:13,327][00035] Avg episode reward: [(0, '4.909')]
|
285 |
+
[2025-05-25 11:13:16,950][01060] Updated weights for policy 0, policy_version 440 (0.0014)
|
286 |
+
[2025-05-25 11:13:18,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 9052.2). Total num frames: 1810432. Throughput: 0: 2314.3. Samples: 449184. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
287 |
+
[2025-05-25 11:13:18,327][00035] Avg episode reward: [(0, '4.971')]
|
288 |
+
[2025-05-25 11:13:21,857][01060] Updated weights for policy 0, policy_version 450 (0.0013)
|
289 |
+
[2025-05-25 11:13:23,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 9051.2). Total num frames: 1855488. Throughput: 0: 2287.2. Samples: 461998. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
290 |
+
[2025-05-25 11:13:23,326][00035] Avg episode reward: [(0, '4.872')]
|
291 |
+
[2025-05-25 11:13:26,248][01060] Updated weights for policy 0, policy_version 460 (0.0018)
|
292 |
+
[2025-05-25 11:13:28,325][00035] Fps is (10 sec: 9011.0, 60 sec: 9216.0, 300 sec: 9050.2). Total num frames: 1900544. Throughput: 0: 2285.6. Samples: 476098. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
293 |
+
[2025-05-25 11:13:28,327][00035] Avg episode reward: [(0, '4.930')]
|
294 |
+
[2025-05-25 11:13:30,604][01060] Updated weights for policy 0, policy_version 470 (0.0015)
|
295 |
+
[2025-05-25 11:13:33,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.1, 300 sec: 9068.4). Total num frames: 1949696. Throughput: 0: 2305.4. Samples: 483026. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
296 |
+
[2025-05-25 11:13:33,327][00035] Avg episode reward: [(0, '4.919')]
|
297 |
+
[2025-05-25 11:13:35,151][01060] Updated weights for policy 0, policy_version 480 (0.0014)
|
298 |
+
[2025-05-25 11:13:38,326][00035] Fps is (10 sec: 9420.1, 60 sec: 9215.8, 300 sec: 9067.0). Total num frames: 1994752. Throughput: 0: 2309.5. Samples: 496876. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
299 |
+
[2025-05-25 11:13:38,329][00035] Avg episode reward: [(0, '4.709')]
|
300 |
+
[2025-05-25 11:13:38,341][01047] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000487_1994752.pth...
|
301 |
+
[2025-05-25 11:13:39,490][01060] Updated weights for policy 0, policy_version 490 (0.0015)
|
302 |
+
[2025-05-25 11:13:43,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9147.7, 300 sec: 9065.8). Total num frames: 2039808. Throughput: 0: 2309.6. Samples: 510900. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
303 |
+
[2025-05-25 11:13:43,326][00035] Avg episode reward: [(0, '5.060')]
|
304 |
+
[2025-05-25 11:13:43,376][01047] Saving new best policy, reward=5.060!
|
305 |
+
[2025-05-25 11:13:43,903][01060] Updated weights for policy 0, policy_version 500 (0.0020)
|
306 |
+
[2025-05-25 11:13:48,248][01060] Updated weights for policy 0, policy_version 510 (0.0017)
|
307 |
+
[2025-05-25 11:13:48,325][00035] Fps is (10 sec: 9421.5, 60 sec: 9284.2, 300 sec: 9082.4). Total num frames: 2088960. Throughput: 0: 2307.4. Samples: 517790. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
308 |
+
[2025-05-25 11:13:48,327][00035] Avg episode reward: [(0, '5.235')]
|
309 |
+
[2025-05-25 11:13:48,338][01047] Saving new best policy, reward=5.235!
|
310 |
+
[2025-05-25 11:13:53,230][01060] Updated weights for policy 0, policy_version 520 (0.0016)
|
311 |
+
[2025-05-25 11:13:53,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 9063.5). Total num frames: 2129920. Throughput: 0: 2277.9. Samples: 530494. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
312 |
+
[2025-05-25 11:13:53,326][00035] Avg episode reward: [(0, '4.951')]
|
313 |
+
[2025-05-25 11:13:57,558][01060] Updated weights for policy 0, policy_version 530 (0.0018)
|
314 |
+
[2025-05-25 11:13:58,325][00035] Fps is (10 sec: 8601.8, 60 sec: 9147.7, 300 sec: 9062.4). Total num frames: 2174976. Throughput: 0: 2278.1. Samples: 544660. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
315 |
+
[2025-05-25 11:13:58,327][00035] Avg episode reward: [(0, '5.032')]
|
316 |
+
[2025-05-25 11:14:01,877][01060] Updated weights for policy 0, policy_version 540 (0.0016)
|
317 |
+
[2025-05-25 11:14:03,325][00035] Fps is (10 sec: 9420.6, 60 sec: 9216.0, 300 sec: 9078.1). Total num frames: 2224128. Throughput: 0: 2281.6. Samples: 551856. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
318 |
+
[2025-05-25 11:14:03,327][00035] Avg episode reward: [(0, '5.191')]
|
319 |
+
[2025-05-25 11:14:06,245][01060] Updated weights for policy 0, policy_version 550 (0.0014)
|
320 |
+
[2025-05-25 11:14:08,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9147.7, 300 sec: 9076.7). Total num frames: 2269184. Throughput: 0: 2308.7. Samples: 565888. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
321 |
+
[2025-05-25 11:14:08,327][00035] Avg episode reward: [(0, '4.991')]
|
322 |
+
[2025-05-25 11:14:10,587][01060] Updated weights for policy 0, policy_version 560 (0.0014)
|
323 |
+
[2025-05-25 11:14:13,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9091.5). Total num frames: 2318336. Throughput: 0: 2310.0. Samples: 580046. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
324 |
+
[2025-05-25 11:14:13,327][00035] Avg episode reward: [(0, '5.251')]
|
325 |
+
[2025-05-25 11:14:13,332][01047] Saving new best policy, reward=5.251!
|
326 |
+
[2025-05-25 11:14:15,049][01060] Updated weights for policy 0, policy_version 570 (0.0016)
|
327 |
+
[2025-05-25 11:14:18,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9090.0). Total num frames: 2363392. Throughput: 0: 2306.0. Samples: 586798. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
328 |
+
[2025-05-25 11:14:18,327][00035] Avg episode reward: [(0, '4.570')]
|
329 |
+
[2025-05-25 11:14:19,385][01060] Updated weights for policy 0, policy_version 580 (0.0018)
|
330 |
+
[2025-05-25 11:14:23,326][00035] Fps is (10 sec: 9011.0, 60 sec: 9215.9, 300 sec: 9088.5). Total num frames: 2408448. Throughput: 0: 2312.6. Samples: 600940. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
331 |
+
[2025-05-25 11:14:23,327][00035] Avg episode reward: [(0, '4.864')]
|
332 |
+
[2025-05-25 11:14:24,252][01060] Updated weights for policy 0, policy_version 590 (0.0016)
|
333 |
+
[2025-05-25 11:14:28,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 9087.1). Total num frames: 2453504. Throughput: 0: 2281.2. Samples: 613554. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
334 |
+
[2025-05-25 11:14:28,327][00035] Avg episode reward: [(0, '4.893')]
|
335 |
+
[2025-05-25 11:14:28,782][01060] Updated weights for policy 0, policy_version 600 (0.0016)
|
336 |
+
[2025-05-25 11:14:33,046][01060] Updated weights for policy 0, policy_version 610 (0.0017)
|
337 |
+
[2025-05-25 11:14:33,325][00035] Fps is (10 sec: 9011.6, 60 sec: 9147.7, 300 sec: 9085.7). Total num frames: 2498560. Throughput: 0: 2285.9. Samples: 620656. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
338 |
+
[2025-05-25 11:14:33,326][00035] Avg episode reward: [(0, '4.584')]
|
339 |
+
[2025-05-25 11:14:37,540][01060] Updated weights for policy 0, policy_version 620 (0.0014)
|
340 |
+
[2025-05-25 11:14:38,325][00035] Fps is (10 sec: 9011.1, 60 sec: 9147.9, 300 sec: 9084.3). Total num frames: 2543616. Throughput: 0: 2311.4. Samples: 634508. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
341 |
+
[2025-05-25 11:14:38,328][00035] Avg episode reward: [(0, '4.673')]
|
342 |
+
[2025-05-25 11:14:41,807][01060] Updated weights for policy 0, policy_version 630 (0.0016)
|
343 |
+
[2025-05-25 11:14:43,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9097.4). Total num frames: 2592768. Throughput: 0: 2315.9. Samples: 648874. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
344 |
+
[2025-05-25 11:14:43,326][00035] Avg episode reward: [(0, '4.641')]
|
345 |
+
[2025-05-25 11:14:46,083][01060] Updated weights for policy 0, policy_version 640 (0.0016)
|
346 |
+
[2025-05-25 11:14:48,325][00035] Fps is (10 sec: 9830.5, 60 sec: 9216.0, 300 sec: 9110.1). Total num frames: 2641920. Throughput: 0: 2312.9. Samples: 655934. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
347 |
+
[2025-05-25 11:14:48,330][00035] Avg episode reward: [(0, '5.311')]
|
348 |
+
[2025-05-25 11:14:48,340][01047] Saving new best policy, reward=5.311!
|
349 |
+
[2025-05-25 11:14:50,425][01060] Updated weights for policy 0, policy_version 650 (0.0016)
|
350 |
+
[2025-05-25 11:14:53,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9108.4). Total num frames: 2686976. Throughput: 0: 2319.4. Samples: 670262. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
351 |
+
[2025-05-25 11:14:53,328][00035] Avg episode reward: [(0, '4.891')]
|
352 |
+
[2025-05-25 11:14:54,765][01060] Updated weights for policy 0, policy_version 660 (0.0016)
|
353 |
+
[2025-05-25 11:14:58,325][00035] Fps is (10 sec: 8601.6, 60 sec: 9216.0, 300 sec: 9219.5). Total num frames: 2727936. Throughput: 0: 2281.0. Samples: 682690. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
354 |
+
[2025-05-25 11:14:58,327][00035] Avg episode reward: [(0, '4.978')]
|
355 |
+
[2025-05-25 11:14:59,766][01060] Updated weights for policy 0, policy_version 670 (0.0015)
|
356 |
+
[2025-05-25 11:15:03,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 9261.1). Total num frames: 2777088. Throughput: 0: 2289.7. Samples: 689836. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
357 |
+
[2025-05-25 11:15:03,327][00035] Avg episode reward: [(0, '4.763')]
|
358 |
+
[2025-05-25 11:15:04,161][01060] Updated weights for policy 0, policy_version 680 (0.0020)
|
359 |
+
[2025-05-25 11:15:08,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9247.2). Total num frames: 2822144. Throughput: 0: 2290.4. Samples: 704008. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
360 |
+
[2025-05-25 11:15:08,326][00035] Avg episode reward: [(0, '4.814')]
|
361 |
+
[2025-05-25 11:15:08,424][01060] Updated weights for policy 0, policy_version 690 (0.0016)
|
362 |
+
[2025-05-25 11:15:12,722][01060] Updated weights for policy 0, policy_version 700 (0.0016)
|
363 |
+
[2025-05-25 11:15:13,325][00035] Fps is (10 sec: 9420.6, 60 sec: 9216.0, 300 sec: 9247.2). Total num frames: 2871296. Throughput: 0: 2327.4. Samples: 718286. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
364 |
+
[2025-05-25 11:15:13,327][00035] Avg episode reward: [(0, '5.006')]
|
365 |
+
[2025-05-25 11:15:17,098][01060] Updated weights for policy 0, policy_version 710 (0.0020)
|
366 |
+
[2025-05-25 11:15:18,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9233.4). Total num frames: 2916352. Throughput: 0: 2326.5. Samples: 725350. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
367 |
+
[2025-05-25 11:15:18,327][00035] Avg episode reward: [(0, '5.181')]
|
368 |
+
[2025-05-25 11:15:21,292][01060] Updated weights for policy 0, policy_version 720 (0.0017)
|
369 |
+
[2025-05-25 11:15:23,325][00035] Fps is (10 sec: 9421.0, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 2965504. Throughput: 0: 2340.7. Samples: 739838. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
370 |
+
[2025-05-25 11:15:23,327][00035] Avg episode reward: [(0, '5.979')]
|
371 |
+
[2025-05-25 11:15:23,329][01047] Saving new best policy, reward=5.979!
|
372 |
+
[2025-05-25 11:15:25,628][01060] Updated weights for policy 0, policy_version 730 (0.0017)
|
373 |
+
[2025-05-25 11:15:28,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3010560. Throughput: 0: 2330.8. Samples: 753762. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
374 |
+
[2025-05-25 11:15:28,327][00035] Avg episode reward: [(0, '4.867')]
|
375 |
+
[2025-05-25 11:15:30,499][01060] Updated weights for policy 0, policy_version 740 (0.0015)
|
376 |
+
[2025-05-25 11:15:33,325][00035] Fps is (10 sec: 9011.3, 60 sec: 9284.3, 300 sec: 9261.1). Total num frames: 3055616. Throughput: 0: 2306.3. Samples: 759716. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
377 |
+
[2025-05-25 11:15:33,327][00035] Avg episode reward: [(0, '5.079')]
|
378 |
+
[2025-05-25 11:15:34,851][01060] Updated weights for policy 0, policy_version 750 (0.0015)
|
379 |
+
[2025-05-25 11:15:38,325][00035] Fps is (10 sec: 9011.1, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3100672. Throughput: 0: 2304.2. Samples: 773952. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
380 |
+
[2025-05-25 11:15:38,326][00035] Avg episode reward: [(0, '5.331')]
|
381 |
+
[2025-05-25 11:15:38,345][01047] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000758_3104768.pth...
|
382 |
+
[2025-05-25 11:15:38,428][01047] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000217_888832.pth
|
383 |
+
[2025-05-25 11:15:39,263][01060] Updated weights for policy 0, policy_version 760 (0.0016)
|
384 |
+
[2025-05-25 11:15:43,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3149824. Throughput: 0: 2340.7. Samples: 788020. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
385 |
+
[2025-05-25 11:15:43,327][00035] Avg episode reward: [(0, '5.236')]
|
386 |
+
[2025-05-25 11:15:43,545][01060] Updated weights for policy 0, policy_version 770 (0.0017)
|
387 |
+
[2025-05-25 11:15:47,943][01060] Updated weights for policy 0, policy_version 780 (0.0017)
|
388 |
+
[2025-05-25 11:15:48,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9247.3). Total num frames: 3194880. Throughput: 0: 2337.9. Samples: 795042. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
389 |
+
[2025-05-25 11:15:48,327][00035] Avg episode reward: [(0, '5.114')]
|
390 |
+
[2025-05-25 11:15:52,181][01060] Updated weights for policy 0, policy_version 790 (0.0014)
|
391 |
+
[2025-05-25 11:15:53,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3244032. Throughput: 0: 2339.5. Samples: 809286. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
392 |
+
[2025-05-25 11:15:53,330][00035] Avg episode reward: [(0, '4.960')]
|
393 |
+
[2025-05-25 11:15:56,550][01060] Updated weights for policy 0, policy_version 800 (0.0016)
|
394 |
+
[2025-05-25 11:15:58,325][00035] Fps is (10 sec: 9830.5, 60 sec: 9420.8, 300 sec: 9261.1). Total num frames: 3293184. Throughput: 0: 2336.0. Samples: 823404. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
395 |
+
[2025-05-25 11:15:58,326][00035] Avg episode reward: [(0, '5.070')]
|
396 |
+
[2025-05-25 11:16:01,138][01060] Updated weights for policy 0, policy_version 810 (0.0018)
|
397 |
+
[2025-05-25 11:16:03,325][00035] Fps is (10 sec: 9011.3, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3334144. Throughput: 0: 2324.6. Samples: 829956. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
398 |
+
[2025-05-25 11:16:03,328][00035] Avg episode reward: [(0, '5.166')]
|
399 |
+
[2025-05-25 11:16:05,923][01060] Updated weights for policy 0, policy_version 820 (0.0015)
|
400 |
+
[2025-05-25 11:16:08,325][00035] Fps is (10 sec: 8601.6, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3379200. Throughput: 0: 2292.6. Samples: 843004. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
401 |
+
[2025-05-25 11:16:08,329][00035] Avg episode reward: [(0, '4.748')]
|
402 |
+
[2025-05-25 11:16:10,243][01060] Updated weights for policy 0, policy_version 830 (0.0017)
|
403 |
+
[2025-05-25 11:16:13,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 9247.3). Total num frames: 3424256. Throughput: 0: 2299.3. Samples: 857232. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
404 |
+
[2025-05-25 11:16:13,326][00035] Avg episode reward: [(0, '4.711')]
|
405 |
+
[2025-05-25 11:16:14,749][01060] Updated weights for policy 0, policy_version 840 (0.0015)
|
406 |
+
[2025-05-25 11:16:18,325][00035] Fps is (10 sec: 9420.7, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3473408. Throughput: 0: 2320.2. Samples: 864126. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
407 |
+
[2025-05-25 11:16:18,327][00035] Avg episode reward: [(0, '5.047')]
|
408 |
+
[2025-05-25 11:16:19,039][01060] Updated weights for policy 0, policy_version 850 (0.0015)
|
409 |
+
[2025-05-25 11:16:23,312][01060] Updated weights for policy 0, policy_version 860 (0.0016)
|
410 |
+
[2025-05-25 11:16:23,325][00035] Fps is (10 sec: 9830.4, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3522560. Throughput: 0: 2322.8. Samples: 878476. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
411 |
+
[2025-05-25 11:16:23,328][00035] Avg episode reward: [(0, '4.728')]
|
412 |
+
[2025-05-25 11:16:27,638][01060] Updated weights for policy 0, policy_version 870 (0.0018)
|
413 |
+
[2025-05-25 11:16:28,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3567616. Throughput: 0: 2324.4. Samples: 892620. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
414 |
+
[2025-05-25 11:16:28,327][00035] Avg episode reward: [(0, '4.699')]
|
415 |
+
[2025-05-25 11:16:31,846][01060] Updated weights for policy 0, policy_version 880 (0.0019)
|
416 |
+
[2025-05-25 11:16:33,325][00035] Fps is (10 sec: 9420.7, 60 sec: 9352.5, 300 sec: 9247.2). Total num frames: 3616768. Throughput: 0: 2331.6. Samples: 899962. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
417 |
+
[2025-05-25 11:16:33,328][00035] Avg episode reward: [(0, '4.872')]
|
418 |
+
[2025-05-25 11:16:36,735][01060] Updated weights for policy 0, policy_version 890 (0.0016)
|
419 |
+
[2025-05-25 11:16:38,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3657728. Throughput: 0: 2299.2. Samples: 912750. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
420 |
+
[2025-05-25 11:16:38,327][00035] Avg episode reward: [(0, '4.904')]
|
421 |
+
[2025-05-25 11:16:41,142][01060] Updated weights for policy 0, policy_version 900 (0.0019)
|
422 |
+
[2025-05-25 11:16:43,325][00035] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 9261.1). Total num frames: 3706880. Throughput: 0: 2300.6. Samples: 926932. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
423 |
+
[2025-05-25 11:16:43,326][00035] Avg episode reward: [(0, '4.862')]
|
424 |
+
[2025-05-25 11:16:45,449][01060] Updated weights for policy 0, policy_version 910 (0.0015)
|
425 |
+
[2025-05-25 11:16:48,325][00035] Fps is (10 sec: 9420.6, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 3751936. Throughput: 0: 2309.8. Samples: 933898. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
426 |
+
[2025-05-25 11:16:48,327][00035] Avg episode reward: [(0, '4.784')]
|
427 |
+
[2025-05-25 11:16:49,832][01060] Updated weights for policy 0, policy_version 920 (0.0014)
|
428 |
+
[2025-05-25 11:16:53,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9261.1). Total num frames: 3801088. Throughput: 0: 2334.8. Samples: 948070. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
429 |
+
[2025-05-25 11:16:53,327][00035] Avg episode reward: [(0, '4.952')]
|
430 |
+
[2025-05-25 11:16:54,202][01060] Updated weights for policy 0, policy_version 930 (0.0016)
|
431 |
+
[2025-05-25 11:16:58,325][00035] Fps is (10 sec: 9420.9, 60 sec: 9216.0, 300 sec: 9247.2). Total num frames: 3846144. Throughput: 0: 2335.3. Samples: 962320. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
432 |
+
[2025-05-25 11:16:58,326][00035] Avg episode reward: [(0, '4.933')]
|
433 |
+
[2025-05-25 11:16:58,474][01060] Updated weights for policy 0, policy_version 940 (0.0017)
|
434 |
+
[2025-05-25 11:17:02,731][01060] Updated weights for policy 0, policy_version 950 (0.0018)
|
435 |
+
[2025-05-25 11:17:03,325][00035] Fps is (10 sec: 9420.8, 60 sec: 9352.5, 300 sec: 9247.2). Total num frames: 3895296. Throughput: 0: 2343.0. Samples: 969562. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
436 |
+
[2025-05-25 11:17:03,327][00035] Avg episode reward: [(0, '4.647')]
|
437 |
+
[2025-05-25 11:17:07,592][01060] Updated weights for policy 0, policy_version 960 (0.0014)
|
438 |
+
[2025-05-25 11:17:08,326][00035] Fps is (10 sec: 9010.6, 60 sec: 9284.2, 300 sec: 9233.3). Total num frames: 3936256. Throughput: 0: 2319.7. Samples: 982866. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
439 |
+
[2025-05-25 11:17:08,327][00035] Avg episode reward: [(0, '5.051')]
|
440 |
+
[2025-05-25 11:17:11,906][01060] Updated weights for policy 0, policy_version 970 (0.0015)
|
441 |
+
[2025-05-25 11:17:13,326][00035] Fps is (10 sec: 9010.5, 60 sec: 9352.4, 300 sec: 9261.1). Total num frames: 3985408. Throughput: 0: 2317.5. Samples: 996910. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
442 |
+
[2025-05-25 11:17:13,329][00035] Avg episode reward: [(0, '4.935')]
|
443 |
+
[2025-05-25 11:17:15,292][01047] Stopping Batcher_0...
|
444 |
+
[2025-05-25 11:17:15,292][01047] Loop batcher_evt_loop terminating...
|
445 |
+
[2025-05-25 11:17:15,293][01047] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
446 |
+
[2025-05-25 11:17:15,292][00035] Component Batcher_0 stopped!
|
447 |
+
[2025-05-25 11:17:15,324][01060] Weights refcount: 2 0
|
448 |
+
[2025-05-25 11:17:15,326][01060] Stopping InferenceWorker_p0-w0...
|
449 |
+
[2025-05-25 11:17:15,327][01060] Loop inference_proc0-0_evt_loop terminating...
|
450 |
+
[2025-05-25 11:17:15,327][00035] Component InferenceWorker_p0-w0 stopped!
|
451 |
+
[2025-05-25 11:17:15,382][01047] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000487_1994752.pth
|
452 |
+
[2025-05-25 11:17:15,396][00035] Component RolloutWorker_w6 stopped!
|
453 |
+
[2025-05-25 11:17:15,395][01068] Stopping RolloutWorker_w6...
|
454 |
+
[2025-05-25 11:17:15,400][01068] Loop rollout_proc6_evt_loop terminating...
|
455 |
+
[2025-05-25 11:17:15,401][01047] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
456 |
+
[2025-05-25 11:17:15,402][01067] Stopping RolloutWorker_w7...
|
457 |
+
[2025-05-25 11:17:15,402][01067] Loop rollout_proc7_evt_loop terminating...
|
458 |
+
[2025-05-25 11:17:15,404][00035] Component RolloutWorker_w7 stopped!
|
459 |
+
[2025-05-25 11:17:15,409][01061] Stopping RolloutWorker_w2...
|
460 |
+
[2025-05-25 11:17:15,410][00035] Component RolloutWorker_w2 stopped!
|
461 |
+
[2025-05-25 11:17:15,411][00035] Component RolloutWorker_w3 stopped!
|
462 |
+
[2025-05-25 11:17:15,411][01065] Stopping RolloutWorker_w3...
|
463 |
+
[2025-05-25 11:17:15,413][01065] Loop rollout_proc3_evt_loop terminating...
|
464 |
+
[2025-05-25 11:17:15,413][01061] Loop rollout_proc2_evt_loop terminating...
|
465 |
+
[2025-05-25 11:17:15,525][00035] Component LearnerWorker_p0 stopped!
|
466 |
+
[2025-05-25 11:17:15,527][01047] Stopping LearnerWorker_p0...
|
467 |
+
[2025-05-25 11:17:15,527][01047] Loop learner_proc0_evt_loop terminating...
|
468 |
+
[2025-05-25 11:17:15,563][00035] Component RolloutWorker_w0 stopped!
|
469 |
+
[2025-05-25 11:17:15,565][01062] Stopping RolloutWorker_w1...
|
470 |
+
[2025-05-25 11:17:15,566][01062] Loop rollout_proc1_evt_loop terminating...
|
471 |
+
[2025-05-25 11:17:15,566][00035] Component RolloutWorker_w1 stopped!
|
472 |
+
[2025-05-25 11:17:15,565][01063] Stopping RolloutWorker_w0...
|
473 |
+
[2025-05-25 11:17:15,569][01063] Loop rollout_proc0_evt_loop terminating...
|
474 |
+
[2025-05-25 11:17:15,601][00035] Component RolloutWorker_w4 stopped!
|
475 |
+
[2025-05-25 11:17:15,601][01064] Stopping RolloutWorker_w4...
|
476 |
+
[2025-05-25 11:17:15,603][01064] Loop rollout_proc4_evt_loop terminating...
|
477 |
+
[2025-05-25 11:17:15,625][01066] Stopping RolloutWorker_w5...
|
478 |
+
[2025-05-25 11:17:15,626][01066] Loop rollout_proc5_evt_loop terminating...
|
479 |
+
[2025-05-25 11:17:15,628][00035] Component RolloutWorker_w5 stopped!
|
480 |
+
[2025-05-25 11:17:15,629][00035] Waiting for process learner_proc0 to stop...
|
481 |
+
[2025-05-25 11:17:17,018][00035] Waiting for process inference_proc0-0 to join...
|
482 |
+
[2025-05-25 11:17:17,021][00035] Waiting for process rollout_proc0 to join...
|
483 |
+
[2025-05-25 11:17:17,358][00035] Waiting for process rollout_proc1 to join...
|
484 |
+
[2025-05-25 11:17:17,555][00035] Waiting for process rollout_proc2 to join...
|
485 |
+
[2025-05-25 11:17:17,557][00035] Waiting for process rollout_proc3 to join...
|
486 |
+
[2025-05-25 11:17:17,558][00035] Waiting for process rollout_proc4 to join...
|
487 |
+
[2025-05-25 11:17:17,559][00035] Waiting for process rollout_proc5 to join...
|
488 |
+
[2025-05-25 11:17:17,560][00035] Waiting for process rollout_proc6 to join...
|
489 |
+
[2025-05-25 11:17:17,561][00035] Waiting for process rollout_proc7 to join...
|
490 |
+
[2025-05-25 11:17:17,562][00035] Batcher 0 profile tree view:
|
491 |
+
batching: 21.5743, releasing_batches: 0.0246
|
492 |
+
[2025-05-25 11:17:17,563][00035] InferenceWorker_p0-w0 profile tree view:
|
493 |
+
wait_policy: 0.0001
|
494 |
+
wait_policy_total: 13.4992
|
495 |
+
update_model: 6.2238
|
496 |
+
weight_update: 0.0015
|
497 |
+
one_step: 0.0046
|
498 |
+
handle_policy_step: 399.8286
|
499 |
+
deserialize: 11.6803, stack: 2.5635, obs_to_device_normalize: 98.9273, forward: 196.3114, send_messages: 20.6973
|
500 |
+
prepare_outputs: 53.6470
|
501 |
+
to_cpu: 34.9520
|
502 |
+
[2025-05-25 11:17:17,564][00035] Learner 0 profile tree view:
|
503 |
+
misc: 0.0036, prepare_batch: 12.0117
|
504 |
+
train: 51.2261
|
505 |
+
epoch_init: 0.0044, minibatch_init: 0.0069, losses_postprocess: 0.5186, kl_divergence: 0.5606, after_optimizer: 22.0477
|
506 |
+
calculate_losses: 17.7847
|
507 |
+
losses_init: 0.0034, forward_head: 1.0293, bptt_initial: 12.4695, tail: 0.7633, advantages_returns: 0.2058, losses: 1.6964
|
508 |
+
bptt: 1.4446
|
509 |
+
bptt_forward_core: 1.3814
|
510 |
+
update: 9.9105
|
511 |
+
clip: 0.9112
|
512 |
+
[2025-05-25 11:17:17,565][00035] RolloutWorker_w0 profile tree view:
|
513 |
+
wait_for_trajectories: 0.1511, enqueue_policy_requests: 7.6643, env_step: 316.0414, overhead: 6.3073, complete_rollouts: 1.0488
|
514 |
+
save_policy_outputs: 8.7204
|
515 |
+
split_output_tensors: 3.3696
|
516 |
+
[2025-05-25 11:17:17,565][00035] RolloutWorker_w7 profile tree view:
|
517 |
+
wait_for_trajectories: 0.1530, enqueue_policy_requests: 7.7979, env_step: 314.2266, overhead: 6.5045, complete_rollouts: 0.9601
|
518 |
+
save_policy_outputs: 8.9357
|
519 |
+
split_output_tensors: 3.3884
|
520 |
+
[2025-05-25 11:17:17,566][00035] Loop Runner_EvtLoop terminating...
|
521 |
+
[2025-05-25 11:17:17,567][00035] Runner profile tree view:
|
522 |
+
main_loop: 454.4760
|
523 |
+
[2025-05-25 11:17:17,568][00035] Collected {0: 4005888}, FPS: 8814.3
|
524 |
+
[2025-05-25 11:17:17,820][00035] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
525 |
+
[2025-05-25 11:17:17,821][00035] Overriding arg 'num_workers' with value 1 passed from command line
|
526 |
+
[2025-05-25 11:17:17,822][00035] Adding new argument 'no_render'=True that is not in the saved config file!
|
527 |
+
[2025-05-25 11:17:17,823][00035] Adding new argument 'save_video'=True that is not in the saved config file!
|
528 |
+
[2025-05-25 11:17:17,824][00035] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
529 |
+
[2025-05-25 11:17:17,825][00035] Adding new argument 'video_name'=None that is not in the saved config file!
|
530 |
+
[2025-05-25 11:17:17,825][00035] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
531 |
+
[2025-05-25 11:17:17,826][00035] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
532 |
+
[2025-05-25 11:17:17,827][00035] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
533 |
+
[2025-05-25 11:17:17,828][00035] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
534 |
+
[2025-05-25 11:17:17,829][00035] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
535 |
+
[2025-05-25 11:17:17,829][00035] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
536 |
+
[2025-05-25 11:17:17,830][00035] Adding new argument 'train_script'=None that is not in the saved config file!
|
537 |
+
[2025-05-25 11:17:17,830][00035] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
538 |
+
[2025-05-25 11:17:17,831][00035] Using frameskip 1 and render_action_repeat=4 for evaluation
|
539 |
+
[2025-05-25 11:17:17,860][00035] Doom resolution: 160x120, resize resolution: (128, 72)
|
540 |
+
[2025-05-25 11:17:17,862][00035] RunningMeanStd input shape: (3, 72, 128)
|
541 |
+
[2025-05-25 11:17:17,864][00035] RunningMeanStd input shape: (1,)
|
542 |
+
[2025-05-25 11:17:17,879][00035] ConvEncoder: input_channels=3
|
543 |
+
[2025-05-25 11:17:17,986][00035] Conv encoder output size: 512
|
544 |
+
[2025-05-25 11:17:17,987][00035] Policy head output size: 512
|
545 |
+
[2025-05-25 11:17:18,985][00035] Num frames 100...
|
546 |
+
[2025-05-25 11:17:19,099][00035] Num frames 200...
|
547 |
+
[2025-05-25 11:17:19,212][00035] Num frames 300...
|
548 |
+
[2025-05-25 11:17:19,365][00035] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
549 |
+
[2025-05-25 11:17:19,366][00035] Avg episode reward: 3.840, avg true_objective: 3.840
|
550 |
+
[2025-05-25 11:17:19,387][00035] Num frames 400...
|
551 |
+
[2025-05-25 11:17:19,499][00035] Num frames 500...
|
552 |
+
[2025-05-25 11:17:19,608][00035] Num frames 600...
|
553 |
+
[2025-05-25 11:17:19,716][00035] Num frames 700...
|
554 |
+
[2025-05-25 11:17:19,775][00035] Avg episode rewards: #0: 3.520, true rewards: #0: 3.520
|
555 |
+
[2025-05-25 11:17:19,776][00035] Avg episode reward: 3.520, avg true_objective: 3.520
|
556 |
+
[2025-05-25 11:17:19,883][00035] Num frames 800...
|
557 |
+
[2025-05-25 11:17:20,003][00035] Num frames 900...
|
558 |
+
[2025-05-25 11:17:20,125][00035] Num frames 1000...
|
559 |
+
[2025-05-25 11:17:20,282][00035] Avg episode rewards: #0: 3.627, true rewards: #0: 3.627
|
560 |
+
[2025-05-25 11:17:20,283][00035] Avg episode reward: 3.627, avg true_objective: 3.627
|
561 |
+
[2025-05-25 11:17:20,300][00035] Num frames 1100...
|
562 |
+
[2025-05-25 11:17:20,418][00035] Num frames 1200...
|
563 |
+
[2025-05-25 11:17:20,531][00035] Num frames 1300...
|
564 |
+
[2025-05-25 11:17:20,641][00035] Num frames 1400...
|
565 |
+
[2025-05-25 11:17:20,777][00035] Avg episode rewards: #0: 3.680, true rewards: #0: 3.680
|
566 |
+
[2025-05-25 11:17:20,777][00035] Avg episode reward: 3.680, avg true_objective: 3.680
|
567 |
+
[2025-05-25 11:17:20,810][00035] Num frames 1500...
|
568 |
+
[2025-05-25 11:17:20,921][00035] Num frames 1600...
|
569 |
+
[2025-05-25 11:17:21,031][00035] Num frames 1700...
|
570 |
+
[2025-05-25 11:17:21,141][00035] Num frames 1800...
|
571 |
+
[2025-05-25 11:17:21,257][00035] Avg episode rewards: #0: 3.712, true rewards: #0: 3.712
|
572 |
+
[2025-05-25 11:17:21,257][00035] Avg episode reward: 3.712, avg true_objective: 3.712
|
573 |
+
[2025-05-25 11:17:21,309][00035] Num frames 1900...
|
574 |
+
[2025-05-25 11:17:21,425][00035] Num frames 2000...
|
575 |
+
[2025-05-25 11:17:21,537][00035] Num frames 2100...
|
576 |
+
[2025-05-25 11:17:21,653][00035] Num frames 2200...
|
577 |
+
[2025-05-25 11:17:21,770][00035] Num frames 2300...
|
578 |
+
[2025-05-25 11:17:21,829][00035] Avg episode rewards: #0: 4.007, true rewards: #0: 3.840
|
579 |
+
[2025-05-25 11:17:21,830][00035] Avg episode reward: 4.007, avg true_objective: 3.840
|
580 |
+
[2025-05-25 11:17:21,944][00035] Num frames 2400...
|
581 |
+
[2025-05-25 11:17:22,062][00035] Num frames 2500...
|
582 |
+
[2025-05-25 11:17:22,171][00035] Num frames 2600...
|
583 |
+
[2025-05-25 11:17:22,283][00035] Num frames 2700...
|
584 |
+
[2025-05-25 11:17:22,427][00035] Avg episode rewards: #0: 4.406, true rewards: #0: 3.977
|
585 |
+
[2025-05-25 11:17:22,428][00035] Avg episode reward: 4.406, avg true_objective: 3.977
|
586 |
+
[2025-05-25 11:17:22,447][00035] Num frames 2800...
|
587 |
+
[2025-05-25 11:17:22,562][00035] Num frames 2900...
|
588 |
+
[2025-05-25 11:17:22,675][00035] Num frames 3000...
|
589 |
+
[2025-05-25 11:17:22,788][00035] Num frames 3100...
|
590 |
+
[2025-05-25 11:17:22,920][00035] Avg episode rewards: #0: 4.335, true rewards: #0: 3.960
|
591 |
+
[2025-05-25 11:17:22,921][00035] Avg episode reward: 4.335, avg true_objective: 3.960
|
592 |
+
[2025-05-25 11:17:22,959][00035] Num frames 3200...
|
593 |
+
[2025-05-25 11:17:23,076][00035] Num frames 3300...
|
594 |
+
[2025-05-25 11:17:23,195][00035] Num frames 3400...
|
595 |
+
[2025-05-25 11:17:23,310][00035] Num frames 3500...
|
596 |
+
[2025-05-25 11:17:23,427][00035] Avg episode rewards: #0: 4.280, true rewards: #0: 3.947
|
597 |
+
[2025-05-25 11:17:23,428][00035] Avg episode reward: 4.280, avg true_objective: 3.947
|
598 |
+
[2025-05-25 11:17:23,486][00035] Num frames 3600...
|
599 |
+
[2025-05-25 11:17:23,622][00035] Num frames 3700...
|
600 |
+
[2025-05-25 11:17:23,737][00035] Num frames 3800...
|
601 |
+
[2025-05-25 11:17:23,849][00035] Num frames 3900...
|
602 |
+
[2025-05-25 11:17:23,961][00035] Num frames 4000...
|
603 |
+
[2025-05-25 11:17:24,013][00035] Avg episode rewards: #0: 4.400, true rewards: #0: 4.000
|
604 |
+
[2025-05-25 11:17:24,014][00035] Avg episode reward: 4.400, avg true_objective: 4.000
|
605 |
+
[2025-05-25 11:17:34,266][00035] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|
606 |
+
[2025-05-25 11:20:23,684][00035] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
607 |
+
[2025-05-25 11:20:23,685][00035] Overriding arg 'num_workers' with value 1 passed from command line
|
608 |
+
[2025-05-25 11:20:23,685][00035] Adding new argument 'no_render'=True that is not in the saved config file!
|
609 |
+
[2025-05-25 11:20:23,686][00035] Adding new argument 'save_video'=True that is not in the saved config file!
|
610 |
+
[2025-05-25 11:20:23,687][00035] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
611 |
+
[2025-05-25 11:20:23,687][00035] Adding new argument 'video_name'=None that is not in the saved config file!
|
612 |
+
[2025-05-25 11:20:23,689][00035] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
613 |
+
[2025-05-25 11:20:23,689][00035] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
614 |
+
[2025-05-25 11:20:23,690][00035] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
615 |
+
[2025-05-25 11:20:23,691][00035] Adding new argument 'hf_repository'='wowthecoder/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
616 |
+
[2025-05-25 11:20:23,691][00035] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
617 |
+
[2025-05-25 11:20:23,692][00035] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
618 |
+
[2025-05-25 11:20:23,693][00035] Adding new argument 'train_script'=None that is not in the saved config file!
|
619 |
+
[2025-05-25 11:20:23,694][00035] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
620 |
+
[2025-05-25 11:20:23,695][00035] Using frameskip 1 and render_action_repeat=4 for evaluation
|
621 |
+
[2025-05-25 11:20:23,719][00035] RunningMeanStd input shape: (3, 72, 128)
|
622 |
+
[2025-05-25 11:20:23,720][00035] RunningMeanStd input shape: (1,)
|
623 |
+
[2025-05-25 11:20:23,731][00035] ConvEncoder: input_channels=3
|
624 |
+
[2025-05-25 11:20:23,763][00035] Conv encoder output size: 512
|
625 |
+
[2025-05-25 11:20:23,764][00035] Policy head output size: 512
|
626 |
+
[2025-05-25 11:20:24,219][00035] Num frames 100...
|
627 |
+
[2025-05-25 11:20:24,328][00035] Num frames 200...
|
628 |
+
[2025-05-25 11:20:24,437][00035] Num frames 300...
|
629 |
+
[2025-05-25 11:20:24,583][00035] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
630 |
+
[2025-05-25 11:20:24,584][00035] Avg episode reward: 3.840, avg true_objective: 3.840
|
631 |
+
[2025-05-25 11:20:24,604][00035] Num frames 400...
|
632 |
+
[2025-05-25 11:20:24,713][00035] Num frames 500...
|
633 |
+
[2025-05-25 11:20:24,823][00035] Num frames 600...
|
634 |
+
[2025-05-25 11:20:24,946][00035] Num frames 700...
|
635 |
+
[2025-05-25 11:20:25,081][00035] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
636 |
+
[2025-05-25 11:20:25,082][00035] Avg episode reward: 3.840, avg true_objective: 3.840
|
637 |
+
[2025-05-25 11:20:25,119][00035] Num frames 800...
|
638 |
+
[2025-05-25 11:20:25,224][00035] Num frames 900...
|
639 |
+
[2025-05-25 11:20:25,330][00035] Num frames 1000...
|
640 |
+
[2025-05-25 11:20:25,436][00035] Num frames 1100...
|
641 |
+
[2025-05-25 11:20:25,545][00035] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
642 |
+
[2025-05-25 11:20:25,545][00035] Avg episode reward: 3.840, avg true_objective: 3.840
|
643 |
+
[2025-05-25 11:20:25,598][00035] Num frames 1200...
|
644 |
+
[2025-05-25 11:20:25,709][00035] Num frames 1300...
|
645 |
+
[2025-05-25 11:20:25,826][00035] Num frames 1400...
|
646 |
+
[2025-05-25 11:20:25,950][00035] Num frames 1500...
|
647 |
+
[2025-05-25 11:20:26,052][00035] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
648 |
+
[2025-05-25 11:20:26,052][00035] Avg episode reward: 3.840, avg true_objective: 3.840
|
649 |
+
[2025-05-25 11:20:26,133][00035] Num frames 1600...
|
650 |
+
[2025-05-25 11:20:26,239][00035] Num frames 1700...
|
651 |
+
[2025-05-25 11:20:26,344][00035] Num frames 1800...
|
652 |
+
[2025-05-25 11:20:26,454][00035] Num frames 1900...
|
653 |
+
[2025-05-25 11:20:26,565][00035] Avg episode rewards: #0: 4.104, true rewards: #0: 3.904
|
654 |
+
[2025-05-25 11:20:26,566][00035] Avg episode reward: 4.104, avg true_objective: 3.904
|
655 |
+
[2025-05-25 11:20:26,620][00035] Num frames 2000...
|
656 |
+
[2025-05-25 11:20:26,736][00035] Num frames 2100...
|
657 |
+
[2025-05-25 11:20:26,852][00035] Num frames 2200...
|
658 |
+
[2025-05-25 11:20:26,964][00035] Num frames 2300...
|
659 |
+
[2025-05-25 11:20:27,078][00035] Num frames 2400...
|
660 |
+
[2025-05-25 11:20:27,241][00035] Avg episode rewards: #0: 4.660, true rewards: #0: 4.160
|
661 |
+
[2025-05-25 11:20:27,242][00035] Avg episode reward: 4.660, avg true_objective: 4.160
|
662 |
+
[2025-05-25 11:20:27,248][00035] Num frames 2500...
|
663 |
+
[2025-05-25 11:20:27,366][00035] Num frames 2600...
|
664 |
+
[2025-05-25 11:20:27,481][00035] Num frames 2700...
|
665 |
+
[2025-05-25 11:20:27,598][00035] Num frames 2800...
|
666 |
+
[2025-05-25 11:20:27,744][00035] Avg episode rewards: #0: 4.543, true rewards: #0: 4.114
|
667 |
+
[2025-05-25 11:20:27,744][00035] Avg episode reward: 4.543, avg true_objective: 4.114
|
668 |
+
[2025-05-25 11:20:27,770][00035] Num frames 2900...
|
669 |
+
[2025-05-25 11:20:27,890][00035] Num frames 3000...
|
670 |
+
[2025-05-25 11:20:28,004][00035] Num frames 3100...
|
671 |
+
[2025-05-25 11:20:28,118][00035] Num frames 3200...
|
672 |
+
[2025-05-25 11:20:28,244][00035] Avg episode rewards: #0: 4.455, true rewards: #0: 4.080
|
673 |
+
[2025-05-25 11:20:28,245][00035] Avg episode reward: 4.455, avg true_objective: 4.080
|
674 |
+
[2025-05-25 11:20:28,289][00035] Num frames 3300...
|
675 |
+
[2025-05-25 11:20:28,407][00035] Num frames 3400...
|
676 |
+
[2025-05-25 11:20:28,524][00035] Num frames 3500...
|
677 |
+
[2025-05-25 11:20:28,636][00035] Num frames 3600...
|
678 |
+
[2025-05-25 11:20:28,722][00035] Avg episode rewards: #0: 4.364, true rewards: #0: 4.031
|
679 |
+
[2025-05-25 11:20:28,723][00035] Avg episode reward: 4.364, avg true_objective: 4.031
|
680 |
+
[2025-05-25 11:20:28,810][00035] Num frames 3700...
|
681 |
+
[2025-05-25 11:20:28,919][00035] Num frames 3800...
|
682 |
+
[2025-05-25 11:20:29,027][00035] Num frames 3900...
|
683 |
+
[2025-05-25 11:20:29,134][00035] Num frames 4000...
|
684 |
+
[2025-05-25 11:20:29,201][00035] Avg episode rewards: #0: 4.312, true rewards: #0: 4.012
|
685 |
+
[2025-05-25 11:20:29,202][00035] Avg episode reward: 4.312, avg true_objective: 4.012
|
686 |
+
[2025-05-25 11:20:39,527][00035] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|