File size: 2,435 Bytes
3b23be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
base_model: google/txgemma-9b-predict
language:
- en
library_name: transformers
license: other
license_name: health-ai-developer-foundations
license_link: https://developers.google.com/health-ai-developer-foundations/terms
pipeline_tag: text-generation
tags:
- therapeutics
- drug-development
- llama-cpp
- gguf-my-repo
extra_gated_heading: Access TxGemma on Hugging Face
extra_gated_prompt: To access TxGemma on Hugging Face, you're required to review and
agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
To do this, please ensure you're logged in to Hugging Face and click below. Requests
are processed immediately.
extra_gated_button_content: Acknowledge license
---
# wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF
This model was converted to GGUF format from [`google/txgemma-9b-predict`](https://huggingface.co/google/txgemma-9b-predict) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/google/txgemma-9b-predict) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -c 2048
```
|