File size: 2,435 Bytes
3b23be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: google/txgemma-9b-predict
language:
- en
library_name: transformers
license: other
license_name: health-ai-developer-foundations
license_link: https://developers.google.com/health-ai-developer-foundations/terms
pipeline_tag: text-generation
tags:
- therapeutics
- drug-development
- llama-cpp
- gguf-my-repo
extra_gated_heading: Access TxGemma on Hugging Face
extra_gated_prompt: To access TxGemma on Hugging Face, you're required to review and
  agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
  To do this, please ensure you're logged in to Hugging Face and click below. Requests
  are processed immediately.
extra_gated_button_content: Acknowledge license
---

# wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF
This model was converted to GGUF format from [`google/txgemma-9b-predict`](https://huggingface.co/google/txgemma-9b-predict) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/google/txgemma-9b-predict) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo wqerrewetw/txgemma-9b-predict-Q4_K_M-GGUF --hf-file txgemma-9b-predict-q4_k_m.gguf -c 2048
```